Saturday, 31 March 2018

Chapter 8 ) - Similar Triangles

(*) Basic Proportionality Theorem(Thales Theorem)

Theorem:- if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio 

Given : In △ABC, DE // BC which intersects sides AB and AC at "d" and "e" respectively

RTP: AD = AE
          DB     EC

Construction : 

Join B,E and C,D and then draw

DM _|_ AC and EN _|_ AB.

(*) Proof




Area of △ADE = (1/2) * AD * EN

Area of △BDE = (1/2) * BD * EN

So,

ar( △ADE)=(1/2)*AD*EN=AD---(1)
ar( △BDE)  (1/2)*BD*EN=BD

Again 

Area of △ADE = (1/2)*AE*DM

Area of △CDE = (1/2)*EC*DM

ar(△ADE)=(1/2)*AE*DM=AE ---(2)
ar(△CDE)  (1/2)*EC*DM  EC

Observe that ⧍BDE and⧍ CDE are on the same base DE and between same parallels BC and DE.

So,

ar(⧍BDE) = ar(⧍CDE) ---(3)

From(1),(2) and (3), we have

AD = AE
DB    EC

Hence proved

Is the converse of the above theorem also true? To examine this, let us perform the following activity

(*)Activity:-

Draw an angle XAY on your note book and on ray AX, mark points B1,B2,B3,B4 and B suc that

AB1=B1B2=B2B3=B3B4=B4B=1cm(say

Similarly on ray AY, mark points C1,C2,C3,C4 and C such that

AC1=C1C2=C2C3=C3C4=C4C=2cm(say)

Join B1, C1 and B, C.

Observe that

AB1 = AC1 = and B1C1 // BC
B1B    C1C     4 



Similarly, joining 

B2C2,  B3C3 and B4C4, you see that

AB2 = AC2 = 2 and B2C2 //BC
B2B     C2C    3

AB3 = AC3 =3 and B3C3 // BC
B3B    C3C    2

AB4 = AC4 = 4 and B4C4 // BC
B4B     C4C    1

From this we obtain the following theorem called converse of the Thales theorem


*******************************************

Theorem-8.2:- if a line divides two sides of a triangle in the same ratio, then the line is parallel to the third side.

Given: In △ABC, a line DE is drawn such that

AD = AE
DB    EC 


RTP : DE // BC

proof : Assume that DE is not parallel to BC then draw the line DE' parallel to BC

So, 

AD = AE'
DB    E'C

.^. AE  = AE'
     EC     E'C'

Adding "1" on both sides of the above, you can see that "E" and E' must coincide.

*********************************************


Now let us solve some examples on Thales theorem and its converse.


Example -1: In △ABC, DE//BC and

AD = 3 ,  AC = 5.6,  Find AE.
DB    5

sol) In △ABC, DE//BC 




=> AD = AE (by B.P.T)
      DB    EC 


but 

AD = 3
DB    5

So,

AE = 3
EC    5

Given:- AC = 5.6 and AE:EC=3:5

     AE       =    3
AC - AE         5

     AE       3 (cross multiply)
5.6 - AE        5


5AE = 3*5.6 - 3AE

8AE = 16.8

AE = 16.8
            8

AE = 2.1 cm

***********************************************************************

Example-2: In the given figure LM//AB  AL = x-3,  AC=2x, BM=x-2  and BC=2x+3 find the value of "x

sol) In △ABC, LM // AB




=> AL = BM  (by B.P.T)
      LC    MC


  x-3      =      x-2          

2x-(x-3)     (2x+3)-(x-2)

x-3 x-2 (cross multiply)
x+3    x+5


(x+5)(x-3) = (x-2)(x+3)

x^2 +2x -15 = x^2 +x -6

=> 2x -x = -6 +15

.^. x =

*************************************************

Example-3) The diagonals of a quadrilateral ABCD intersect each other at point 'O' such that 

AO = CO.  Prove that ABCD is a trapezium
BO     DO 

Sol) Given : In quadrilateral ABCD,
 
AO  = CO
BO     DO

RTP: ABCD is a trapezium 

Construction: Through 'O' draw a line parallel to AB which meets DA at X.




Proof : In △DAB, XO//AB  (by construction)

DX = DO  (by B.P.T)
XA    OB


AX = BO
XD    OD  ------(1

again

AO = CO    (given)
BO     DO

AO = BO
CO    OD  ------(2)

From(1) and (2)

AX = AO
XD    CO

In △ADC, XO is a line such that

AX = AO
XD    OC

=> XO // DC (by converse of the B.P.T)
                       
=> AB // DC

 In quadrilateral ABCD, AB//DC

=> ABCD is a trapezium (by definition)

Hence proved. 

*******************************************


Example 4) In trapezium ABCD, AB//DC, E and F are points on non-parallel sides AD and BC respectively such that EF // AB. Show that

AE = BF
ED    FC
 
Sol) Let us join AC to intersect EF at G.




AB//DC and EF//AB (given)

=> EF// DC (Lines parallel to the same line are parallel to each other

In △ADC,  EG//DC

So 

AE = AG (by BPT)
ED    GC

Similarly, In △CAB, GF//AB

CG = CF  (by BPT)
GA     FB

i.e, AG = BF   ----(2)
      GC    FC

From(1) and (2)

AE = BF
ED    FC

******************************************

Exercise -8.1




(1) In triangle PQR, ST is a line such that  
PS   = PT  and  also /  PST = /_ PRQ. 
SQ      TR

Prove that △ PQR is an isosceles triangle.




sol) Given :- PS PT
                      SQ     TR

2) ST || QR   ( By Converse of BPT)

Basic Proportionality Theorem (BPT) :- If a line is drawn parallel to one side of a triangle to intersect the other two side in distinct points, the other two sides are divided in the same ration.

3)  /_PST  =  /_ PQR  ( Corresponding angles are always equal)

Given :- /_ PST = /_ PRQ

4) /_PQR = /_PRQ

We know :- Two angles or two sides of an isosceles triangle are equal.

.^.   /_\PQR is an isosceles triangle.







(2) In the given figure, LM // CB  and LN // CD 
prove that AM  = AN
                   AB      AD




sol)  Consider /_\ ABC

1)Given :-  LM || CB

2) AM  =  AL    (by BPT)
    MB       LC

Consider /_\ ADC

3) Given :- LN ||CD

4) AN  = AL  (by BPT)
     ND    LC

equating (2) and (4)

5)  AM  = AN
     MB      ND


Taking the reciprocal of (5)

6) MB  = ND
    AM     AN  

Adding 1 on both sides

7) MB + 1  =  ND  +  1
    AM            AN


8) (MB + AM)  =  (ND + AN)
            AM                   AN


9) AB  =  AD
    AM      AN


10) AM  =  AN
      AB        AD


Hence proved

****************************


(3) In the given figure, DE //AC and DF //AE. 
Prove that BF  = BE
                   FE     EC





sol) Consider /_\ ABE

1) Given :- DF  ||  AE

2) BF  =  BD   (By BPT)
    FE       DA


Consider  /_\ ABC

3) Given :-   DE  ||  AC

4) BE  BD  ( by BPT)
    EC      DA

equating (2) and (4)

5) BF  =  BE
    FE      EC


Hence proved .

*******************************************************


(4) In the given figure, 

AB // CD // EF,
given 

AB = 7.5 cm  
DC = ycm,  
EF = 4.5 cm,  
BC = x cm. 

Calculate the values of "x" and "y"



sol)  Consider  △ ACB  and △ CEF

Both are similar traingles

.^. AB  = BC
      EF     CF


Given :- AB = 7.5 cm   and EF = 4.5 cm

7.5  = x
4.5     3

7.5 *3  = x
   4.5

22.5  = x   (4.5 * 5 = 22.5)
  4.5

5 = x


Consider △ BCD  and △ BFE

From BPT theorem, both are similar triangles

=   x+3
y        4.5

y = 5 * 4.5
         8

y = 5*45
      8*10

y = 225
        80

y = 45
      16


*******************************************************


(5) Prove that a line drawn through the mid-point of one side of a triangle parallel to another side bisects the third side ( using basic proportionality theorem )

sol) Let us assume △ ABC











  DE || BC

"D" is the mid-point of AB

RTP :- "E" is the mid-point of AC

We know that :- If a line is drawn parallel to one side of a triangle to intersect the other two side in distinct points, the other two sides are divided in the same ration.

AD  = AE
DB     EC

DB  =  AE
DB      EC

1 = AE
      EC

EC  = AE

=> E is the mid-point of AC

Hence proved.

***********************

(6) Prove that a line joining the midpoints of any two sides of a triangle is parallel to the third side ( Using converse of basic proportionality theorem )

sol) Assume :- /_\ ABC















"D" is the mid-point of AB
"E" is the mid-point of AC

RTP :- DE  || BC

Proof :- In  /_\  ABC,

"D" is the mid-point of AB

=> AD = DB

=> AD  = 1  -----(1)
      DB


"E" is the mid-point of AC

=> AE = EC

=> AE  = 1    -----(2)
      EC

eq (1) & (2)

AD  = AE
DB      EC

.^. DE  ||  BC   ( By BPT)

Hence proved.

*******************************

(7) In the given figure, DE // OQ  and DF // OR . Show that EF // QR.

sol) Consider  /_\ POQ

1)  Given :- DE  ||  OQ

2) PE  =  PD  (by BPT)
    EQ      DO


Cnsider /_\ POR :-

3) Given :- DF  ||  OR

4) PF  =  PD   (by BPT)
    FR      DO

Equating (2)  &  (4)

5) PE  PF
    EQ      FR

6)  EF  || QR   ( By BPT

Hence proved.

******************************************************


(8) In the adjacent figure A, B and C are points on OP, OQ and OR respectively such that AB // PQ and AC // PR. Show that BC // QR.



sol)  Consider  /_\ OPQ

1) Given :-AB  || PQ

2) OA  =  OB    (By BPT)
    AP       BQ


Consider  /_\ OPR

3) Given :-AC ||  PR

4) OA  =  OC  (By BPT)
     AP       CR

equating  (2)  &  (4)

5) OB  OC
     BQ      CR

6) BC  || QR   ( By BPT)

Hence proved.

****************************

9)   ABCD is a trapezium in which AB  ||  DC and its diagonals intersect each other at point "O". Show that  
AO CO
BO       DO

sol) Draw a line EF  || CD  which is passing through "O".














In  /_\ ABC  and  /_\ EOC

These are similar triangles as per BPT.


AE  BO  ------(1)
EC      OC

Similarly, in /_\ BOD  and /_\ FOD


BF  =  AO  -----(2)
FD      OD

in /_\ ABC  and /_\ BAD

BO AO   ----(3)
OC      OD

Because diagonals of a trapezium divide each other in same ratio 

From the above three equations, it is clear

AE  BF
EC      FD

Hence , /_\ ABC  ~  /_\ BAD

using the third equation

BO  =  AO
OC      OD

or

AO CO
BO      DO

*********************************


(10) Draw a line segment of length 7.2 cm and divide it in the ration 5 : 3. Measure the two parts.

sol) Take m = 5  and n = 3














Steps of construction :-

1)  Draw line AB of length  7.2

2)  Draw a ray AX, making an acute angle(less then 90 degree) with AB.

3) Mark  8 ( 5 +3) points A1, A2. A3.....A8  on AX  such that AA1 =  A1A2  = so on..


4) join BA8

5) Since we want the ratio 5:3 , Through point A5 (m=5), we draw a line parallel to BA8  (by making an angle equal to /_A A  at A5 )  intersecting  AB at the point  "C".

then,  AC  : CB  = 5 : 3

*********************************************************************************




AAA Criterion for similarity of Triangles

Theorem-8.3 : In two triangles , if the angles are equal, then the sides opposite to the equal angles are in the same ratio( or proportional) and hence the two triangles are similar. 

Given: In triangles ABC and DEF,





∠A = ∠D

∠B = ∠E

∠C = ∠F 

R.T.P :- 

AB = BC = AC
DE    EF     DF

Construction: Locate points "P" and "Q" on DE and DF respectively.such that AB=DP and AC=DQ.

Join PQ.

Proof : ABC ~ DPQ (why?)

This gives  B = P = E and PQ//EF (how?) 

Therefore

DP = DQ (why?)
PE    QF  

i.e, AB = AC (why?)
      DE    DF

Similarly

AB = BC
DE    EF   and So

AB = BC = AC
DE    EF     DF

Hence proved.

Note : If two angles of a triangle are respectively equal to the two angles of another triangle, then by the angle sum property of a triangle, third angles will also be equal.

So AA similarity criterion is stated as if two angles of one triangle are respectively equal to the two angles triangles, then the two triangles are similar.

What about the converse of the above statement?

If the sides of a triangle are respectively proportional to the sides of another triangle , is it true that their corresponding angles are equal?

Let us exercise it through an activity.

Activity :-

(*) Draw two triangles ABC and DEF such that

AB = 3cm, 
BC = 6cm, 
CA = 8cm, 
DE = 2.5 cm, 
EF = 9cm and 
FD = 12cm.

sol)  we have

AB = 3     = 30  = 10 = 2
DE    4.5      45     15    3

BC = 6 = 2
EF     9    3

CA = 8 = 2
DF    12   3

AB BC = CA = 2
DE     EF     FD     3

Now measure the angles of both the triangles. What do you observe? what can you say about the corresponding angles? They are equal, so the triangles are similar. You can verify it for different triangles.

from the above activity, we can give the following criterion for similarity of two traingles.

(*) SSS Criterion for similarity of Triangles 

Theorem-8.4: If in two triangles, the sides of one triangle are proportional to the sides of the other triangle, then their corresponding angles are equal and hence the triangles are similar. 




Given : ABC and DEF are such that 

AB = BC = CA
DE    EF    FD   (< 1)


RTP :  

A = ∠D 

∠B = E, 

 ∠C = ∠F

Construction : Locate points P and Q on DE and DF respectivelysuch that AB = DP and AC = DQ. Join PQ. 

Proof :

DP = DQ    and PQ // EF (why?)
PE     QF

So ∠P = ∠E and ∠Q = ∠F (why ?)

Therefore,

DP = DQ = PQ
DE    DF     EF

So,

DP = DQ = BC (why?)
DE    DF     EF

So BC = PQ (Why ?)

∆ABC DPQ (why ?) 

So ∠A = ∠D, ∠B = ∠E and ∠C = ∠F (How ?)

We studied that for similarity of two polygons any one condition is not sufficient. But for the similarity of triangles, there is no need for fulfillment of both the conditions as one automatically implies the other. Now let us look for SAS similarity criterion.



(*) SAS Criterion for similarity of Triangles

Theorem-8.5 :- If one angle of a triangle is equal to one angle of the other triangle and the sides including these angles are proportional, then the two triangles are similar.

Given:- In △ABC and  △DEF

AB = AC  (<1) and
DE    DF

∠A = ∠D

RTP : △ABC ~ △DEF

Construction:- Locate points P and Q on DE and DF respectively such that AB=DP and AC=DQ.

Join PQ.

Proof: PQ//EF and △ABC ~ △DPQ

So 

∠A = ∠D

∠B = ∠P

∠C = ∠Q

.^. △ABC ~△ DEF


Construction : To construct a triangle similar to a given triangle as per given scale factor. 

a) Construct a triangle similar to a given triangle ABC with its sides equal to (3/4) of corresponding sides of ABC (scale factor (3/4)



Steps

1). Draw a ray BX, making an acute angle with BC on the side opposite to vertex A. 

2). Locate 4 points B1, B2, B3 and B4 on BX so that BB1 = B1B2 =B2B3 = B3B4.3. 

3). Join B4C and draw a line through B3 parallel to B4C intersecting BC at C. 

4). Draw a line through C parallel to CA to intersect AB at A.So A′BC′ is the required triangle.

 Let us take some examples to illustrate the use of these criteria.



Example-5. A person 1.65m tall casts 1.8m shadow. At the same instance, a lamp-posts casts a shadow of 5.4 m. Find the height of the lamppost.



Solution:In ABC and PQR

∠B = ∠Q= 90 deg. 

∠C = ∠R (AC || PR, all suns rays are parallel at any instance) 

ABC ~ PQR ( by AA similarity) 

AB = BC 
PQ    QR  (cpst, corresponding parts of Similar triangles)


1.65 = 1.8
  PQ    5.4

PQ = 1.65 * 5.4 = 4.95 m.
             1.8

The height of the lamp post = 4.95m 

********************************************************

Example-6. A man sees the top of a tower in a mirror which is at a distance of 87.6m from the tower. The mirror is on the ground facing upwards. The man is 0.4m away from the mirror and his height is 1.5m. How tall is the tower?

solution: In ABC & EDC 



∠ABC=∠EDC=90°

∠BCA=∠DCE  (angle of incidence and angle of reflection are same) 

ABC ~ EDC (by AA similarity) 

AB = BC
ED    CD

=> 1.5 = 0.4
       h     87.6

h = 1.5 * 87.6   = 328.5m
            0.4

Hence , the height of the towers is 328.5 m.

********************************************************

Example-7). Gopal is worrying that his neighbour can see into his living room from the top floor of his house. 

He has decided to build a fence that is high enough to block the view from their top floor window. What should be the height of the fence? 

The measurements are given in the figure



solution:- In △ABD & △ACE

∠B = ∠C = 90 deg

∠A = ∠A (common angle

△ABD ~ △ACE (by AA similarity) 

AB = BD
AC    CE

 2 = BD
 3    1.2

BD = 2 *1.2
             8

=> 2.4
       8

=> 24 = = 0.3m
      80   10 

Total height of the fence required is 1.5m + 0.3m = 1.8m to block the neighbour's view

Exercise-8.2

1). In the given figure, ∠ADE = ∠B

(!) Show that △ABC ~ △ADE
      


2) If AD = 3.8 cm,  AE = 3.6 cm,  BE = 2.1 cm,  BC = 4.2 cm find DE.



sol) given:-  ∠ADE  = ∠B

∠C = 90,   

∠A = 90  - 0

If ∠A = 90 - 0 ,  ∠B = 0  => ∠AED = 90

Comparing  △ABC with  △ AED  we have

∠A common in both triangles

∠C  ∠AED  = 90

∠ADE  ∠B

.^. By AAA property, △ ABC  and  △ ADE are similar triangles

△ABC ~ △ADE



Hence proved


2sol) Given  AD = 3.8 cm,  AE = 3.6 cm,  BE = 2.1 cm,  BC = 4.2 

As △ ABC  and △ ADE are similar triangles,

We have

AB BC  =  AC
AD      DE      AE

AB  =  4.2   =  AC
3.8       DE       3.6


But, AE  +  BE  =  AB

3.6  +  2.1 = 5.7

Now,

5.7 = 4.2
3.8    DE

DE = 4.2 * (2/3)
                 

DE = 1.4 * 2

DE = 2.8 cm


**********************************************************

(2) The perimeters of two similar triangles are 30 cm and 20 cm respectively.  If one side of the first triangle is 12 cm, determine the corresponding side of the second triangle.

sol) Since the triangle are similar

perimeter of 1st △ = Any side of 1st △     
perimeter of 2nd△   corresponding side of 2nd△

30 = 12
20     x

x = 20 *12
           30

x = 8 cm

***********************************************************

(3) A girl of height 90 cm is walking away from the base of a lamp post at a speed of 1.2 m/sec.  If the lamp post is 3.6m above the ground . Find the length of her shadow after 4 seconds.

sol)  Lamp post (PQ) = 3.6 m














 

Height of girl(ST) = 90 cm  

(As lamp post is in "m" convert  "cm" into  "m")


1m = 100 cm

Height of girl(ST) = 90 m  =  0.9 m
                                   100

Speed = 1.2 m/sec,

RTP :- Length of her shadow i.e.  TR

Solution :- The girl walks "QT"  distance in 4 seconds

We have formula :-

Speed = Distance
                  Time

1.2  = QT
            4

1.2 * 4  = QT

4.8 = QT

QT = 4.8 m



Now,

In /_\ PQR  and  /_\ STR

/_R  =  /_R   [Common]

/_Q  =  /_T  ( Both 90 deg because lamp post as well as the girl are standing to the ground)

.^. , using AA similarity criterion

STRT   (by cpst)
PQ     QR

0.9  =     RT    
3.6      RT + TQ

1     x      
4      x  +  4.8

x  + 4.8   = 4x

3x  =  4.8

x = 1.6m

RT = 1.6 m

.^. The length of her shadow after 4 sec = 1.6m

****************************************



(4) CM and RN are respectively the medians of 















Prove that





 




sol) Given :-  /_\ ABC  ~ /_\PQR

So, AB   = BC  =  CA   ----(1)
      PQ      QR       RP

and /_A = /_P,   /_B = /_Q ,  /_C = /_R  ----(2)

But  AB = 2 AM   and  PQ = 2 PN ( As "CM"  and "RN" are medians)

So, from (1),  2AM  =  CA
                       2PN        RP

i.e,  AM  = CA   -------(3)
        PN     RP

Also , /_\ MAC  =  /_\NPR (from 2)    -------------(4)

So, from (3) and (4),

/_\ AMC  ~  /_\PNR  (SAS similarity)  -------(5)

*****************************************
(2) CM  =  AB
      RN       PQ

sol) /_\ AMC  ~  /_\PNR  (SAS similarity)   ----(5)

from (5), CM  CA   -----(6)
                 RN       RP

---------------------------------------

AB   = BC  =  CA   ----(1)
PQ      QR       RP
=======================


But, CA  AB
        RP       PQ   ( From 1 )----------( 7 )

.^. CM  =  AB   (From (6) & (7)   ------(8)
      RN       PQ


*************************************




 

sol) From  (1)

AB  BC  
PQ      QR

.^. CM BC  ( from (8)]  -----(9)
     RN       PQ

Also, CM  =  AB   =  2BM
          RN       PQ       2QN

i.e,  CM  BM ------(10)
       RN       QN

from (9) and (10)

i.e, CM  =  BC  =  BM
      RN       QR      QN

.^. /_\ CMB  ~  /_\RNQ  (SSS similarity)

************************************

(5)  Diagonals AC and BD of a trapezium ABCD with AB //DC intersect each other at the point "O". Using the criterion of similarly for two triangles, show that 

OA  =  OB
OC      OD

sol) 












Consider /_\ AOB  and  /_\ DOC

/_AOB  =  /_DOC  (vertically opposite angles)

/_OAB  =  /_OCD  ( alternative interior angle)

/_OBA = /_ODC  ( alternative interior angle)

.^. /_\ AOB  ~ /_\ DOC   ( AAA test of similarity)

OA  =  OB
OC      OD  (corresponding parts of similar triangle)

Hence proved.

*********************************************


(6)  AB, CD , PQ are perpendicular to BD. AB = x,  Cd =y  and PQ = Z. 











Prove that 

1 + 1
x    y       z

sol) In /_\BCD.   PQ  ||  CD

BQ = PQ   -------(1)
BD     CD

In /_\ABD,  PQ  || AB

QD PQ
BD     AB

1 - BQ  =  PQ
     BD       AB

1 - PQPQ   (from 1)
     CD     AB

1 = PQ (  1   +   1  )
               CD    AB

  1   1   +    1

PQ    CD     AB

But , given AB = x,    CD = y  and PQ = z

=  1   +   1   
Z     Y        X

************************************
(7) A flag pole 4m tall casts a 6m, shadow.  At the same time, a nearby building casts a shadow of 24m. How tall is the building?

sol) 










In /_\ ABC  and /_\ PQR

/_B  =  /_Q = 90 deg

/_C  = /_R  (AC  ||  PR, all sun's rays are parallel at any instance)

/_\ABC ~ /_\PQR  ( by AA similarity)

AB  = BC
PQ  = QR  (cpst)

  4      =   6  

PQ         24

PQ  =  4  *  24
                6

PQ  = 16 m. the height of the building

*************************************

(8) CD and GH are respectively the bisectors of /_ACB and /_EGF such that D and H  lie on sides AB and FE of  /_\ABC and /_\ FEG respectively.
  








then show that  

(1) CD = AC
      GH   FG









sol) 
















 

1)  Given :- /_\ ABC  ~  /_\FEG


2) /_BAC  =  /_EFG   (Corresponding angle of similar triangle)

3) /_ABC = /_FEG (corresponding angle of similar triangle)

4) /_ACB = /_FGE

5)  1/2   /_ACB  =  1/2  /_FGE

6) /_ACD  =  /_FGH   and  /_BCD = /_EFGH

consider  /_\ ACD  and /_\ FGH

7) /_DAC  =  /_HFG   (from 2)

8) /_ACD  =  /_EGH   (from 6)

9) Also,  /_ADC  =  /_FGH

If the two angle of triangle are equal to the two angle of another triangle, then by angle sum property of /_\,  3rd angle will also be equal.


10) .^. /_\ADC ~ /_\FHG (By AAA test of similarity)

11) CD  =  AC  (CPST)
      GH      FG

Consider  /_\DCB  amd  /_|HGE

12)  /_DBC  =  /_HEG   (from 3)

13)  /_BCD  =  /_FGH   (from 6)

14) also, /_BDC  =  /_EHG

15) /_\DCB  ~ /_\HGE  


**********************************************





(9) AX and DY are altitudes of two similar triangles 





Prove that AX : DY = AB : DE.

sol) 












Given :- /_\ ABC  ~  /_\DEF

2) /_ABC  =  /_DEF   ( CAST)

Consider /_\ABX  and  /_\DEY

3)  /_ABX  =  /_DEY  (from 2)

4) /_AXB  =  /_DYE  = 90 deg

5) /_BAX  =  /_EDY

6)  /_\ABX  ~  /_\DEY  (by AAA test of similarity)

7)  AX  =  AB   (CPST)
     DY       DE

******************************************

(10) Construct a triangle shadow similar to the given /_\ ABC, with its sides equal  to 5/3 of the corresponding sides of the triangle ABC.

sol) Given a triangle ABC, we are required to construct a triangle whose sides are of the corresponding sides of /_\ABC

Steps of Construction :-




















1) Draw any ray BX making an acute angle with BC on the side opposite to the vertex A.

2) Locate 5 points ( the greater of 5 and 3 in 5/3)  B1,B2,B3,B4 and B5 so that  BB1=B1B2=B2B3=B3B4=B4B5.

3) Join B3( the 3rd point , 3 being smaller of 3 and 5 in) to C and draw a line through  B5 parallel to B3C, intersecting the extended line segment BC  at C'.

4) Draw a line through C' parallel to CA intersecting the extended line segment BA at A'.


Then  A'BC'  is the required triangle.

For justification of the construction , note that /_\ABC ~ /_\A'BC'.

.^.,  AB   =  AC  BC
       A'B      A'C'     BC'

So, BC  =  5  and
       BC'    3

.^. A'B A'C'  =  BC'  = 5
      AB        AC        BC      3

**********************************


(11) Construct a triangle of sides 4cm, 5cm, and 6 cm. Then, construct a triangle similar to it, whose sides are 2/3 of the corresponding sides of the first triangle.

sol) Construct a triangle ABC with given sides  , AB = 4cm,  BC = 5cm,  CA = 6cm. 

Given a triangle ABC, we are required to construct a triangle whose sides are 2/3 of the corresponding sides of /_\ABC.

Steps of construction :-




















1) Draw any ray BX making an angle 30 deg with the base BC of /_\ ABC on the opposite side of the vertex A.

2)Locate seven points  B1,B2,B3 on BX so that  BB1=b1B2=B2B3

Note:- The number of points should be greater of "m" and 'N" in the scale factor  m/n)

3)  Join B2- C' and draw a line through B3 || B2C, intersecting the line segment BC at C,

4) Draw a line through "C" parallel to C'A intersecting the line segment BA at A'B'C is the required triangle.

*********************************************************************************


(12) Construct an Isosceles triangle whose base is 8cm and altitude is 4cm.  Then, draw another triangle whose sides are 1(1/2) times the corresponding sides of the isosceles triangle.

sol) An isosceles tranagle whose base is 8cm and altitude is 4cm. Scale factor is 1(1/2) = 3/2.

Steps of construction:



1) Draw a line segment BC= 8cm.

2) Draw a perpendicular bisector AD of BC

3) Join AB and AC we get an isosceles triangle /_\ABC

4) Construct an acute angle /_CBX downwards.

5) On BX make three equal parts.

6) Join C to B2  and draw  a line through B3 parallel to B2C intersecting the line extended line segment BC at C'

7) Again draw a parallel line C'A' to AC cutting BP at A'

8) /_\A'BC' is the required triangle.

************************************************

Areas of Similar Triangles

For two similar triangles , ratio of their corresponding sides is the same.

Theorem-8.6: The ratio of the areas of two similar triangles is equal to the ratio of the squares of their corresponding sides.

Given : △ABC ~ △PQR 



RTP :

ar(△ABC) = (AB )^2  (BC)^2 = (CA)^2
ar(△PQR) = (PQ)^2   (QR)^2 = (RP)^2

Construction: Draw AM _|_ BC and PN_|_QR 

Proof:

ar(△ABC) = (1/2)*BC*AM = BC*AM ---(1)
ar(△PQR)    (1/2)*QR*PN     QR*PN 

In △ABM & △PQN

∠B = ∠Q (△ABC~ △PQR)

∠M = ∠N = 90 deg

.^. △ABM ~ △PQN (by AA similarity)

AM = AB------(2)
PN      PQ

Also △ABC ~ △PQR(given)

AB = BC = AC
PQ    QR    PR  -------(3)

Therefore,

ar(△ABC) = AB * AB = (AB)^2
ar(△PQR)    PQ    PQ     (PQ)^2

Now by using (3), we get

ar(△ABC) = (AB)^2 = (BC)^2 = (AC)^2
ar(△PQR)    (PQ)^2    (QR)^2    (PR)^2

Hence proved.

*****************************************************

Example-8. prove that if the area of two similar traingles are equal, then they are congruent.

sol) △ABC ~ △PQR 

ar(ABC)=(AB)^2= (BC)^2 = (AC)^2
ar(PQR)  (PQ)^2   (QR)^2     (PR)^2 

But

ar(△ABC) = 1 --->(Areas are equal)
ar(△PQR) 

(AB)^2 = (BC)^2 = (AC)^2 = 1
(PQ)^2    (QR)^2    (PR)^2

So 

AB^2 = PQ^2 

BC^2 = QR^2

AC^2 = PR^2

From which we get

AB = PQ
BC = QR
AC = PR

.^. △ABC ~ △PQR ( by SSS congruency) 


*****************************************************

Example-9. ABC ~ DEF and their areas are respectively 64cm^2 and 121cm^2. If EF = 15.4 cm, then find BC

sol) ar(△ABC) = (BC)^2
       ar(△DEF)     (EF)^2 

64  = (BC)^2
121= (15.4)^2

  8  =   (BC)
11  =   15.4 

BC 8  *  15.4
               11

BC = 11.2 cm. 

******************************************************

Example-10. Diagonals of a trapezium ABCD with AB//DC, intersect each other at the point 'O'. If AB = 2CD, find the ratio of triangles AOB and COD 

sol) In trapezium ABCD, AB//DC also AB=2CD


In △AOB and △COD  

∠AOB = ∠COD (vertically opposite angles)

∠OAB = ∠OCD (alternate interior angles)

△AOB ~ △COD ( by AA similarity)  


ar(△AOB)  AB^2
ar(△COD)      DC^2 

(2DC)^2 = 4
(DC)^2      1 

.^. ar(△AOB) : ar(△COD) = 4:1 



 





 



Exercise- 8.3

(1) Equilateral triangles are drawn on the three sides of a right angled triangle. Show that the area of the triangle on the hypotenuse is equal to the sum of the areas of triangles on the other two sides.

sol) Given right angled triangle is ABC with AC as hypotenuse 














let 

AB = a  
BC = b
AC = c

we have a^2  + b^2  = c^2 --------(1)

We know that area of equilateral triangle 

= _/* side^2
      4

Area of ACD  = _/3  c^2
                              4

Area of BCF = _/3  b^2
                            4

Area of AEB = _/3 a^2
                            4

Area of AEB  + Area of BCF 

= _/3  (a^2  + b^2)
     4                                                   

from 1 

a^2 + b^2 = c^2

Area of AEB + Area of BCF 

= _/3 c^2  = Area of ACD
     4                                                     

**********************************************

                                                                             


(2) Prove that the area of the equilateral triangle described on the side of a square is half the area of the equilateral triangles described on its diagonal.

sol) Let us take a square with side 'a'

Then the diagonal of square will be  a_/2

Area of equilateral traingle with side '

a'=  -/3   a^2
         4

Area of equilateral triangle with side 

a_/2 = _/3   (a_/2)^2
              4

=> _/3  2a^2
        4

Ratio of two areas can be given as follows :

_/3  a^2
   4
-----------   =  1 /2
_/3 2a^2      
  4

*************************************

(3) D, E, F are mid points of sides  BC, CA, AB of /_\ ABC .  Find the ratio of areas of /_\ DEF and /_\ ABC.

sol)


















Since "D"  and "F" are midpoints of AB  and AC,

DE  || AF  or DF || BE

similarly  EF  || AB  or EF  || DB

AFED is a parallelogram as both pair of opposite side are parallel 

By the property of parallelogram

/_DBE  =  /_DFE

or

/_DEF  =  /_ABC  ----(1)

similarly

/_FEB  =  /_ACB  ----(2)

In /_\DEF  and /_\ABC

equation  (1)  and (2)

/_\DEF  ~ /_\CAB

ar (/_\DEF) 
ar (/_\ABC)

=>  DE^2     
          2DE^2

=>  1
       4

ar (/_\DEF)  :  ar (/_\ABC)  =  1:4

*****************************


(4) In /_\ ABC,  XY // AC and XY divides the traingle into two parts of equal area. Find the

 ratio of AX .

              XB

sol) 













Given :-  XY  || AC

=>  /_1  =  /_3    and    /_2  =  /_4  [ Corresponding angles]

=> /_\BXY  ~  /_\BAC   [ AA similarity]

=> ar  (/_\BXY)
      ar (/_\BAC)

=>  BX^2  [By theorem]   ----(1)
       BA^2

Also, we are given that

ar (/_\BXY)  =  1/2  ar  (/_\BAC)

=> ar  (/_\BXY)
      ar (/_\BAC)

=> 1/2  -------(2)

From (1)  and  (2)

BX^2  =  1
BA^2      2

BX =   1  
BA    _/2

Now, AX
          XB

=>  AB -BX
            XB

=>  AB  - 1
       BX

=> _/2  -1
        1

AX  =  _/2-1
XB           1


**************

(5) Prove that the ratio of areas of two similar triangles is equal to the square of the ratio of their corresponding medians.


sol)










In case of two similar triangles  ABC  and PQR

ar (ABC)  =  AB^2   =  AC^2
ar  (PQR)      PQ^2       PR^2

Let us assume  "AD"  adn "PM"  are the medians of these two triangles.

Then;

AB^2  =  AC^2  =  AD^2
PQ^2      PR^2       PM^2

Hence , 

ar  (ABC)  =  AD^2
ar (PQR)       PM^2

*******************************************************

(6) /_\ABC ~ /_\ DEF ,  BC = 3cm,  EF = 4cm and area of /_\ ABC = 54 cm^2.  Determine the area of /_\ DEF.

sol) Given  BC = 3cm    and   EF = 4 cm

ar  (/_\ABC)  =  [ BC ]^2
ar (/_\DEF)        [ EF ]^2


         54              =   9  

ar (/_\DEF)           16

ar (/_\DEF)  =  54  * 16
                               9

ar (/_\DEF)  =  96 cm^2

************************

(7) ABC is a triangle and PQ is a straight line meeting AB in P and AC in Q. If AP =1cm, and BP = 3cm, AQ = 1.5 cm, CQ = 4.5 cm.

Prove that ( area of /_\APQ = 1/16 area of /_\ABC)

sol)
















From above figure its evident that /_\ABC ~ /_\APQ

We know that

Area of /_\APQ     
Area of  /_\ABC                        

=>  [     AP     ]^2
        AP +PB 

=>  [        AQ        ]^2
          AQ  +  QC

=> 
      16

=> Area of /_\APQ  = 1/16  Area of /_\ABC

******************************************
(8) The area of two similar triangles are 81 cm^2 and 49 cm^2 respectively. If the attitude of the bigger triangle is 4.5cm. Find the corresponding attitude for the smaller triangle.

sol) 










Let  AD  and PM are corresponding altitude of triangle.

ar  (/_\ ABC )  =  [ AD ]^2
ar  (/_\DEF)         [ PM]^2

  81      =    (4.5)^2

  49             DQ

DQ  =  7 * 4.5    =  3.5 cm
                9


*******************************************************



Theorem-8.7 : If a perpendicular is drawn from the vertex of the right angle of a right triangle to the hypotenuse, then the triangles on both sides of the perpendicular are similar to the whole triangle and to each other.



Proof: ABC is a right triangle, right angled at "B". Let "BD" be the perpendicular to hypotenuse "AC"

In △ADB and △ABC 

∠A = ∠A 

and ∠ADB = ∠ABC

So △ADB ~ △ABC -----(1)

Similarly,△ADB ~ △ABC ----(2)

So from (1) and (2), triangles on both sides of the perpendicular BD are similar to the whole triangle ABC.

Also since △ADB ~ △ABC

△BDC ~ △ABC

So △ADB ~ △BDC 

*******************************************************

Pythagoras Theorem (Baudhayan Theorem)

Theorem-8.8 : In a right triangle, the square of hypotenuse is equal to the sum of the squares of the other two sides. 


Given : △ABC is a right triangle right angled at "B

RTP : AC^2 = AB^2 + BC^2 

Construction : Draw BD _|_ AC

proof :△ ADB ~ △ABC

AD  AB   (sides are proportional)
AB      AC

AD . AC = (AB)^2  ------(1)

Also, △BDC ~ △ABC

CD = BC
BC    AC

CD . AC = BC^2  ----(2)

On adding (1) & (2)

AD.AC + CD. AC = AB^2 + BC^2

AC(AD + CD) = AB^2 + BC^2

AC.AC = AB^2 + BC^2

AC^2 = AB^2 + BC^2

The above theorem was earlier given by an ancient Indian mathematician Baudhayan(about 800 BC) in the following form.

" The diagonal of a rectangle produces by itself the same area as produced by its both sides (i.e, length and breadth)." So sometimes, this theorem is also referred to as the Baudhayan theorem. 

Theorem-8.9: In a triangle if square of one side is equal to the sum of squares of the other two sides, then the angle opposite to the first side is a right angle and the triangle is a right angled triangle. 



Given : In △ABC ,

AC^2 = AB^2 + BC^2 

RTP: ∠B = 90 deg 

Construction : Construct a right angled triangle △PQR right angled at "Q" such that PQ = AB and QR = BC.



Proof : In △PQR ,

PR^2 = PQ^2 + QR^2 (Phy theorem as ∠Q = 90 deg)

PR^2 = AB^2 + BC^2 ( by construction)  ----(1)

but AC^2 = AB^2 + BC^2 ( given)   ----(2)

.^. AC = PR from (1) and (2)

Now in △ABC and △PQR 

AB = PQ ( by construction)

BC = QE ( by construction)

AC = PR ( proved)

.^. △ABC ~ △PQR ( by SSS congruency)

.^. ∠B = ∠Q (by cpct)

but ∠Q = 90 deg ( by constrcution)

.^. ∠B = 90 deg

Hence proved.

 **********************************************************
**

Example-11. A ladder 25m long reaches a window of building 20m above the ground, determine the distance of the foot of the ladder from the building.

sol) In △ABC , ∠C = 90 deg 



AB^2 = AC^2 + BC^2 ( By pythagorous theorem)

(25)^2 = (20)^2 + BC^2

BC^2 = 625 - 400 = 225

BC = √ 225 = 15m

Hence, the foot of the ladder is at a distance of 15m from the building. 

*************************************************

Example-12. BL and CM are medians of a triangle ABC right angled at "A".  

Prove that 4(BL^2 + CM^2) = 5BC^2

sol) BL and CM are medians of △ABC in which  ∠A = 90deg 




In △ ABC

BC^2 = AB^2 + AC^2 (Phythagorous theorem) --(1)

 In △ ABL

BL^2 = AL^2 + AB^2

So

BL^2 = (AC/2)^2 + AB^2 ( L is the midpoint of AC

BL^2 = (AC^2/4)  + AB^2

4BL^2 = AC^2 + 4AB^2

In △CMA ,

CM^2 = AC^2 + AM^2

CM^2 = AC^2 + (AB)^2 (M is the midpoint of AB)
                               (2)^2

CM^2 = AC^2 + (AB^2
                                  4

4CM^2 = 4AC^2 + AB^2 ----(3)

On adding (2) and (3), we get

4(BL^2 + CM^2) = 5(AC^2 + AB^2)

.^. 4(BL^2 + CM^2) = 5BC^2 (from 1

*******************************************************

Example-13. 'O' is any point inside a rectangle ABCD.

Prove that OB^2 + OD^2 = OA^2 + OC^2

sol) Through 'O' draw PQ//BC so that 'P' lies on 'AB' and 'Q' lies on 'DC'

Now PQ//BC

.^. PQ_|_AB & PQ_|_DC (∠B = ∠C = 90deg)

So,

∠BPQ = 90 deg &

∠CQP = 90 deg

.^. BPQC and APQD are both rectangles.

Now from △OPB.

OB^2 = BP^2 + OP^2 ------(1

Similarly from △OQD,

we have OD^2 = OQ^2 + DQ^2 ---(2)

from △OQC

we have OC^2 = OQ^2 + CQ^2 ----(3)

and from △OAP,

OA^2 = AP^2 + OP^2

Adding (1) and (2)

OB^2 + OD^2 = BP^2 + OP^2 + OQ^2 + DQ^2

=> CQ^2 + OP^2 + OQ^2 + AP^2 (BP=CQ and DQ=AP)

=> CQ^2 + OQ^2 + OP^2 + AP^2

=> OC^2 + OA^2 ( from (3) & (4))

******************************************************

Example-14. The hypotenuse of a right triangle is 6m more than twice of the shortest side. If the third side is 2m, less than the hypotenuse, find the sides of the triangle.

sol) Let the shortest side be 'X' m

Then hypotenuse = (2x+6)m and third side=(2x+4)m

by Pythagores theorem, we have

(2x+6)^2 = x^2 + (2x+4)^2

4x^2 + 24x + 36 = x^2 + 4x^2 + 16x + 16

x^2 - 8x - 20 = 0

(x-10)(x+2) = 0

x = 10  or x = -2

but "x" can't be negative as side of a traingle.

.^. x = 10

Hence, the sides of the triangle are 10m, 26m, and 24m.

********************************************************

Example -15.  ABC is a right triangle right angled at "C". Let BC = a , CA= b, AB = c  and let 'P' be the length of  perpendicular from "C" on "AB" .



prove that 

(!) pc = ab

(!!) (1/p^2) = (1/a^2) + (1/b^2)

sol) (!) CD_|_AB and CD = p.

Area of △ABC = (1/2) * AB * CD

=> (1/2)*cp.

also

Area of △ABC = (1/2) * BC * AC

=> (1/2)*ab

(1/2)*cp = (1/2)*ab

cp = ab ------(1)


(!!) Since △ABC is a right triangle right angled at "C"

AB^2 = BC^2 + AC^2

 c^2 = a^2 + b^2

(ab)^2 = a^2 + b^2
 (p)^2

  1     =   a^2  + b^2
 p^2          a^2b^2

=>  1    +   1   
     a^2     b^2


 ******************************************************



Exercise - 8.4

(1) prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

sol) 






















ABCD is a rhombus in which diagonals  AC  and BD intersect at point  "O".

RTP :- AB^2  +  BC^2  + CD^2  + DA^2  =  AC^2  + DB^2

In /_\AOB  :  AB^2  =  AO^2  +  BO^2

In /_\BOC  :  BC^2  =  CO^2  +  BO^2

In  /_\COD  :  CD^2  =  DO^2  + CO^2

In /_\AOD  :  AD^2  =  DO^2  +  AO^2


Adding the above four equations, we get;

AB^2  +  BC^2  +  CD^2  + DA^2  =  AO^2  + BO^2 +  CO^2  +  BO^2 + DO^2  + CO^2 + DO^2  +  AO^2

OR

AB^2  +  BC^2  + CD^2  + DA^2 =  2(AO^2  + BO^2  + CO^2  + DO^2)

AB^2  +  BC^2  + CD^2  + DA^2 = 2(2AO^2  +  2BO^2)

***************************************
Since  AO^2  =  CO^2   and  BO^2  =  DO^2
**************************************

AB^2  +  BC^2  + CD^2  + DA^2 = 4(AO^2  +  BO^2)  -------(1)


Now, let us take the sum of squares of diagonals ;

AC^2  +  DB^2  =  (AO  +  CO)^2  +  (DO  + BO)^2

=> (2AO)^2  +  (2DO)^2

=> 4AO^2  +  4BO^2  ------(2)

from equations  (1) and (2), it is clear ;

AB^2  +  BC^2  + CD^2  + DA^2 =  AC^2  +  DB^2

Hence proved.

********************************************


(2) ABC is a right triangle right angled at "B". Let "D" and "E" be any points on AB and BC respectively.















 Prove that AE^2 + CD^2 = AC^2  + DE ^2


sol) In right angled  /_\ABE   and  /_\DBC, we have

AE^2  = AB^2  +  BE^2    --------(1)

DC^2  = DB^2  + BC^2  -------(2)


Adding (1)  and (2)

AE^2  +  DC^2  =  AB^2  +  BE^2  +  DB^2  + BC^2

= (AB^2  +  BC^2)_  +   ( BE^2  +  DB^2)

**************************************************
Since AB^2  + BC^2  = AC^2  in right angled triangle ABC
***************************************************

= ( AC^2  +  DE^2)

Hence proved.

********************************************

(3) Prove that three times the square of any side of an equilateral triangle is equal to four times  the square of the altitude.

sol)



















Given :- An equilateral triangle  ABC, in which  AD _|_BC

RTP  :-  3AB^2  =  4AD^2

Proof :-  Let  AB= BC = CA = a

In /_\ ABD   and  /_\ACD

AB=AC,  AD = AD

and  /_ADB  =  /_ADC  ( each 90 deg)

.^. /_\ ABD  =  /_\ ACD

.^.  BD  =  CD  =  a   (CPCTE)
                              2

Now,

In /_\ ABD,   /_D = 90 deg

.^. AB^2  =  BD^2  + AD^2

or  

AB^2  =   [CD]^2   +  AD^2
                    [2}^2

=> [ AB ]^2  +   AD^2
         2

AB^2  =   [AB]^2  +  AD^2
                 [  2  }^2


4AB^2 =  AB^2  +  4AD^2


3AB^2  =  4AD^2

*************************


(4) PQR is a triangle right angled at "P" and "M" is a point on "QR" such that PM     1   QR.
Show that PM^2  = QM . MR.

sol)













Let /_MPR = x

In  /_\ MPR

/_MRP =  180 - 90 -x

/_MRP = 90 - x


Similarly  in  /_\ MPQ

/_MPQ  =  90  -  /_MPR

=>  90  - x


/_MQP  =  180  -  90  -  (90-x)

/_MQP = x


In /_\QMP  and  /_\PMR

/_MPQ  =  /_MRP

/_PMQ  =  /_RMP

/_MQP  =  /_MPR


/_\QMP  ~  /_\PMR   [by  AAA criteria]

QM  =  MP  
PM       MR

PM^2  =  MR  *  QM

Hence proved.


**********************************

(5). ABD is a triangle right angled at "A" and AC   1  BD  





1) AB^2  = BC . BD.

sol) consider two triangles  ACB  and  DAB

we have  /_ABC  =  /_DBC  (common)

/_ACB  =  /_DAB  (Each is right angle)

/_CAB  =  /_ADB  (Third angle)

.^. Triangle are similar and their corresponding sides must be proportional.

i.e,  /_ADC  =  /_ADB

AC  =  CB  =  AB
DA      AB       DB

.^. AB^2 = BC  * BD

********************

2) AC^2 = BC .DC

sol) /_BDA  =  /_BDC  =  90

/_3  =  /_2  =  90 /_1    

[.^.  /_1  +  /_2  = 90,   /_1  +  /_3  = 90  ]


/_2  +  /_4  = 90 /_2

[.^. /_1  +  /_2  =  90,   /_2   +  /_4  =  90]


/_\ ADB  ~  /_\BDC   [AAA criterion of similarity].

Their corresponding sides must be proportional.

DCCA  =  DA  
AC      CB      AB

=>  DC  =  CA
       AC      CB

=>  CA^2  =  BC  *  DC


******************************************


3) AD^2 = BD.CD.

sol) In two triangles  ADB  and  ABC, we have

/_ADC  =  /_ADB  ( Common)

/_DCA  =  /_DAB  ( Each is right angle)

/_DAC = /_DBA  (Third angle)

/_DCA  =  /_DAB  ( AAA similarity)


Triangle  ADB  and ABC   are similar and so their corresponding sides must be proportion.

DC  =  CA DA
DA      CB       DB


DC  =  DA
DA       DB


AD^2  =  DB  *  DC

Hence proved.


************************

(6) ABC is an isosceles triangle right angled at "C". Prove that AB^2 = 2AC^2.

sol) Since  the triangle is right angled  at  "C" therefore  the side  "AB"  is the hypotenuse.  Let the base of the triangle be "AC"  and the altitude be "BC".

Applying the Pythagorean theorem

















AB^2  =  AC^2  +  BC^2

Since the triangle is isosceles triangle  two of the sides shall be equal.

Therefore  AC  = BC

Thus  AB^2  =  AC^2  +  AC^2

AB^2  =  2AC^2

Hence proved.

********************************

(7) "O" is any point in the interior triangle ABC. OD  1  BC, OE  1  AC and OF  1 AB , show that





1) OA^2  + OB^2  + OC^2 - OD^2  - OE^2 - OF^2  = Af^2  + BD^2  + CE^2

sol) Given :-  /_\ ABC  and  "O" is a point in the interior of a triangle  ABC where,   OD  _|_ BC,  OE _|_ AC,    OF  _|| AB

Proof :-

1)  Let us join the point  "O"  from A,B,  and C.

2) Using pythagoras theorem,

   (Hyp)^2  =  (Height)^2  +  (Base)^2


3) Ina  right angle triangle  OAF.

(OA)^2  =  AF^2  +  OF^2   ------(1)


4)  In right angle triangle  ODB

(OB)^2  =  OD^2  +  BD^2   -----(2)


5) In a right angle triangle   OEC

(OC)^2  =  (OE)^2  +  (EC)^2   -----(3)


Adding  (1)  +  (2)   +  (3)

(OA)^2  +  (OB)^2  +  (OC)^2  =   AF^2  +  OF^2 + OD^2  +  BD^2 +  (OE)^2  +  (EC)^2

OA^2  + OB^2  + OC^2 - OD^2  - OE^2 - OF^2  = Af^2  + BD^2  + CE^2

Hence proved.

*************************************
2) AF^2  +  BD^2  + CE^2  = AE^2  + CD^2  + BF^2.

sol) Using Pythagoras theorem.

(Hyp)^2  =  (height)^2  +  (Base)^2

1)  In  /_\ ODB,  

OB^2 = OD^2  +BD^2


2) In /_\ OFB,

OB^2  =  OF^2  +FB^2


3) In /_\ OFA,

OA^2  = OF^2  +  AF^2


4) In /_\ OEA,

OA^2  =  OE^2  +  AE^2


5) In /_\ OEC,

OC^2  =  OE^2  +  CE^2


6) In /_\ ODC,

OC^2  =  OD^2  + CD^2


L.H.S  :-  AF^2  +  BD^2  +  CE^2

=>  (  OA^2  -  OF^2)  +  ( OB^2  -  OD^2)  +  ( OC^2  -  OE^2)

=> OA^2  +  OB^2  +  OC^2  -  OF^2  -  OD^2  -  OE^2


R.H.S :-  AE^2  + CD^2  + BF^2

=> (OA^2  -  OE^2)  +   ( OC^2  -  OD^2)  +  (OB^2  -  OF^2)

=> OA^2  +  OB^2  +  OC^2  -  OF^2  -  OD^2  -  OE^2


Since L.H.S  = R.H.S

Hence proved


**************************************



(8) A wire  attached to vertical pole of height 18m is 24m long and has a stake attached to the other end. How far from the base of the pole should the stake be driven so that the wire will be taut. 

sol) let  AB = 24 m   be a  wire attached to a vertical pole

BC  = 18m

To keep the wire taut,  let it be fixed at "A"

AB^2  =  AC^2  + BC^2

(24)^2  =  AC^2  +  (18)^2

AC^2 = 576 - 324

AC  =  6√7

Hence,  the stake may be placed at a distance 6_/7m the base of pole

*********************************************************
(9) Two poles of heights 6m and 11m stand on a plane ground . If the distance between the feet of the poles is 12m find the distance between their tops.

sol ) 













Given  :-  BC = 6 cm   and  AD = 11m,   BC  = ED

So,  AE  =  AD  -  ED  
              =   11  -  6
              =   5m

BE  =  CD  =  12m

Find,  AB  =  ?

Solution :- Now ,  In /_\ ABE,  /_E  = 90

AB^2  =  AE^2  +  BE^2

AB^2  =  (5)^2  +  (12)^2

AB^2  =  169

AB =  13m


The distance between their tops is 13m.


*****************************************


(10) In a equilateral triangle ABC, D is a point on side BC such that BD = 1/3 BC. Prove that 9AD^2 = 7Ab^2.

sol) 













ABC is a equilateral triangle,  

AB = BC = AC  and  BD = 1/3 BC

Construction :-

Draw  AE  _|_  BC


Proof :-

/_\ABE   ~ /_\ ACE

.^.  BE  =  EC  =  BC / 2


Now in  /_\ABE,

AB^2  =  BE^2  + AE^2

also,  AD^2  =  AE^2  +  DE^2



.^. AB^2  -  AD^2  =  BE^2  -  DE^2

=> BE^2  -  (  BE  -  BD)^2

=> ( BC)^2   -   (  BC  -  BC  ) ^2
         2                    2         3


=> (AB)^2  -  (  AB  -  AB)^2
        2                  2         3

AB^2  -  AD^2  =   2AB^2
                                     9

or

7AB^2  =  9AD^2

******************************

11) In the given figure, ABC is a triangle right angled at "B, D and E are points on BC trisect it. 









prove that 8AE^2  = 3AC^2  + 5AD^2.

sol) In  /_\ABD,   /_B  = 90 deg

.^.  AC^2  =  AB^2  +BC^2   -----(1)

similarly  ,  AE^2  =  AB^2  + BE^2    -----(2)

and AD^2  =  AB^2  + BD^2    -----(3)


From (1)

3AC^2  =  3AB^2  + 3BC^2   -----(4)


From (2)

5AD^2  =  5AB^2  +  5BD^2  ----(5)



Adding equation  (4)  and (5)

3AC^2  +  5AD^2  =  8AB^2  +  3BC^2  +  5BD^2

=>  8AB^2  +  3(3  BE  )^2   +  5  (  BE)^2
                            2                               2

=>  8 (AB^2  +  BE^2)

=>  8AE^2


**************************



12) ABC is an isosceles triangle right angled at "B". Similar traingles ACD and ABE are constructed on sides  AC and AB. Find the ratio between the areas of /_\ABE and /_\ ACD.








sol) Given  /_\ABC is an isosceles triangle in which  /_B = 90 deg


=> AB = BC

By Pythagoras theorem, we have  

AC^2  =  AB^2  + BC^2

=> AC^2  =  AB^2  +  AB^2   

[ Since  AB = BC ]

=> AC^2  =  2AB^2   --------(1)

It is also given that  /_\ABE  ~  /_\ACD

ratio of areas of similar triangles is equal to ratio of squares of their corresponding  sides.

ar (/_\ ABC)  =  AB^2
ar(/_\ ACD)       AC^2


ar(/_\ABC)  =  AB^2
ar(/_\ACD)     2AB^2    --------(1)


ar(/_\ABC)  = 
ar(/_\ACD)      2


.^. ar(/_\ABC)  :  ar(/_\ACD)  =  1:2

******************************

Optional exercise:-

1). In the given figure





QT = QR
PR     QS
 and ∠1 and ∠2
 prove that △PQS ~ △ TQR


sol)Given :- ∠1  = ∠ 2

QT = QR
PR     QS

R.T.P : △PQS ~ △TQR 

Proof : Since ∠1  = ∠2

Step 1) PR = QP [ sides opposite to equal angles are equal

Step 2)  Putting PR=QP in

QR = QT
QS     PR

QR = QT   -------(2)
QS     QP

In △PQS and △TQR

 ∠PQS = ∠TQR  [common angles]

QR = QT  -----(from(2))
QS     QP

Therefore, 

△PQS~ △TQR [ SAS similarity]

Hence Proved

*****************************************

2) Ravi is 1.82m tall. He wants to find the height of a tree in his backyard. from the tree's base he walked 12.20m. along the tree's shadow to a position where the end of his shadow exactly overlaps the end of the tree's shadow. He is now 6.10m from the end of the shadow. How tall is the tree?

sol

In △EDA and ⧍CBA

∠B = ∠D = 90 deg

∠A = ∠A  ( common angle)

AA Traingle similarity :- if two traingles are similar it means that all the corresponding angle pairs  are congruent and all corresponding sides are proportional

.^. by AA similarity

△EDA ~ △CBA

Now,

ED = DA
CB    BA

 ED   DB + BA

1.82         6.10

 ED    12.20 + 6.10

1.82                6.10

 ED     =   18.30

1.82          6.10

ED = 3  * (1.82)

ED = X = 5.46 is the height of the tree

*******************************************

3) The diagonal AC of a parallelogram ABCD intersects DP at the point "Q" where "P" is any point on side "AB". Prove that
 CQ * PQ = QA * QD

sol) Given :- The diagonal "AC of a parallelogram "ABCD" intersects "DP" at the point "Q"

Where "p" is any point on side "AB"

R.T.P:- CQ * PQ = QA * QD

Proof :- In △APQ & △CDQ



∠AQP = ∠CQD [ vertically opposite angles]

∠PAQ = ∠DCQ [ alternate angles]

.^. △APQ ~ △CQD [ A.A criterion]

PQ  = QA
QD     CQ  (cross multiply)


CQ * PQ = QA * QD

Hence  proved. 

*****************************************









4) △ABC and △AMP are two right triangles right angled  at "B" and "M" respectively.





(*) Prove that

(!) △ABC ~ △ AMP

sol) Given :- 
∠ABC = 90deg ,∠AMP = 90deg

 RTP :- △ABC ~ △AMP

Proof :- In  △ABC and △AMP



∠A = ∠A  (common angle)

∠ABC = ∠AMP = 90 (Both 90 deg)

Using AA similarity

△ABC ~ △AMP 

***************

(!!) CA  BC
       PA      MP 

sol) We know when two traingles are similar, the ratio of their corresponding sides is proportional.
 

As we already proved in (!)

△ABC ~ △AMP 

By using AAA criterion 

CA  = BC 
PA      MP  

Hence proved


 *******************************************

(5) An aeroplane leaves an airport and flies due north at a speed of 1000 kmph. At the same time another aeroplane leaves the same airport and flies due west at a speed of 1200 kmph. How far apart will the two planes be after 1(1/2) hour?

sol) condition (1) : 1st plane flies due north at a speed of 1000 kmph

We have

Distance = Speed * Time

Distance = 1000 * 1(1/2)

Distance = 1000 * (3/2)

Distance = 1000 * 1.5 => 1500 km


(*) condition (2) :- 2nd plane due west

Distance = 1200 * 1.5 => 1800 km  


In △ABC



BC is distance travelled by first aeroplane and BA is the distance travelled by second aeroplane.

Applying pythagoars Theorem.

AC^2 = AB^2 + BC^2

AC^2 = (1500)^2 + (1800)^2

AC^2 2,25,0000 + 3,24,0000

AC     = √5,49,0000       
                                        
AC = √ 549 * √10,000      549
                                          183
AC = √549 * √(100)^2    61  61
                                                1
AC = 100 √(3)^2 * √61 
      
AC = 3 *100 √61

AC = 300√61 km 

Hence, the two planes would be 300√61 km from each other.

******************************************




(6) In a right triangle ABC right angled at C, P, and Q are points on sides AC and CB respectively which divide these sides in the ratio of 2:1.




Prove that

(1) 9AQ^2 = 9 AC^2 + 4BC^2

sol) Given :- "P" divides "AC" in the ratio 2:1 and "Q" divides "BC" in the ratio 2:1

 

CQ = (2/3) BC

PC = (2/3) AC 

(!) In ACQ, we have

AQ^2 = AC^2 + CQ^2

AQ^2 = AC^2 + (2/3)BC)^2

AQ^2 = AC^2 + (4/9) BC^2

9AQ^2 = AC^2 +4BC^2   

Hence proved. 

******************************** 

(2) 9BP^2 = 9BC^2 + 4AC^2
 
sol) In PCB, we have

BP^2 = BC^2 + PC^2

BP^2 = BC^2 + (2/3)AC)^2

BP^2 = BC^2 + (4/9)AC^2

BP^2 9BC^2 + 4AC^2
                            9

9BP^2 = 9BC^2 + 4AC^2

Hence proved

*************************************

(3) 9(AQ^2 + BP^2) = 13AB^2 

sol) Adding (1) and (2) we get

9AQ^2 + 9BP^2 = 9 AC^2 +9BC^2 + 4BC^2 + 4AC^2

9(AQ^2 +BP^2) = 13AC^2 + 13BC^2

9(AQ^2 + BP^2) = 13(AC^2 + BC^2)

.^. 9(AQ^2 + BP^2) = 13AB^2

Hence proved.

***************************************

No comments:

Post a Comment