Saturday, 31 March 2018

Chapter 11) - Trigonometry




(*) Naming the sides in a right Triangle

Let's take a right triangle ABC as shown in the figure.

In triangle ABC, we can consider ∠CAB as A is an acute angle. Since AC is the longest side, it is called " hypotenuse


Here you observe the position of side BC with respect to angle A. It is opposite to angle A and we can call it as "opposite side of angle A". And the remaining side AB can be called as " Adjacent side of angle A

AC = Hypotenuse

BC = Opposite side of angle A

AB = Adjacent side of angle A


(*) Ratios in a Right Angle Triangle: 

Consider a right angle triangle ABC having right angle at B

Then, trigonometric ratios of the angle A in right angle triangle ABC are defined as follows: 



Sine of ∠A :

sinA=Length of the side opposite to angle A
                     Length of hypotenuse

= BC
   AC


(*) Cosine of ∠A

cosA=Length of the side adjacent to angle A
                     length of hypotenuse

= AB
   AC 




(*) Tangent of ∠A

TanA=Length of the side opposite to angle A
           Length of the side adjacent to angle A

= BC
   AB 


(*) Multiplicative inverse :- 

Multiplicative inverse of "sine A" is "cosecant A". 

simply written as " cosec A"

i.e., cosec A =   1               
                        sin A

Similarly,

Multiplicative inverse of "cos A" is "secant A"(simply written as "sec A") and that of "Tan A" is cotangent A (simply written as cot A)

i.e., sec A =   1    
                    cos A

and

cot A =   1         
             Tan A

How can you define 'cosec' in terms of sides?

If 

sin A = Opposite side of the angle A
                            Hypotenuse

then

cosec A =           Hypotenuse                 
                 Opposite side of the angle

*****************************************

Example-1. If Tan A = 3/4, then find the other trigonometric ratio of angle A.

sol) Tan A = Opposite side = 3
                      Adjacent side    4

.^., opposite side : adjacent side = 3:4

For angle A

opposite side = BC=3k

Adjacent side =AB=4k(where k is any +ve no)

Now, we have in triangle ABC( by Pythagoras theorem) 



AC^2 = AB^2 + BC^2

=>(3k)^2 + (4k)^2 = 25k^2

AC = √25k^2

=> 5k = Hypotenuse 

Now,we can easily write the other ratios of trigonometry

sin A = 3k = 3
             5k    5

cos A = 4k = 4
             5k    5

cosec A =   1      5
                 sin A     3


sec A =   1     =   5
             cos A     4


cot A =   1      4
             tan A     3


****************************************

Example-2. if ∠A and ∠P are acute angles such that sin A= sin P then prove that ∠A = ∠P

Sol) Given sin A = sin P

we have

sin A = BC
             AC

sin P = QR
             PQ

Then BC = QR
          AC    PQ

.^., BC = QR  = k ----------(1)
      AC     PQ



By using Pythagoras theorem 

AB = AC^2 - BC^2
PR     √PQ^2 - QR^2

AB = √AC^2 - k^2 AC^2 (from (1)
PR    √PQ^2 - k^2 PQ^2

AB = √AC^2 (1 - k^2)
PR     √ PQ^2(1 - k^2) 

AB = AC = BC
PR     PQ    QR

then

△ABC ~ △PQR


Therefore, ∠A = ∠P

*****************************************
Example-3. Consider a triangle PQR, right angled at P, in which PQ= 29 units, QR=21 units and ∠PQR = 𝜽, then find the values of

(!) cos^2 𝜽 + sin^2 𝜽 

sol)In PQR, we have

PR = √PQ^2 - QR^2

= √(29)^2 - (21)^2

=√400 = 20 units



sin 𝜽 = PR = 20
             PQ    29


cos 𝜽 = QR = 21
              PQ    29


Now 

(!) cos^2 𝜽 + sin^2 𝜽

sol) (20)^2 + (21)^2
           (29)^2    (29)^2


= 221 + 400   = 1
         841



(!!) cos^2 𝜽 - sin^2 𝜽   

sol) (20)^2 - (21)^2
       (29)^2   (29)^2


= - 41
    841

**************************************** 
 

 
Exercise - 11.1

(1) In right angle triangle ABC 8 cm, 15cm and 17 cm are the lengths of a AB, BC and CA respectively. Then, find out sin A, cos A and tan A.

sol) 


(a) sin ALength of the side opposite to angle A
                             Length of hypotenuse

=> 15 

      17


(b)  CosA= Length of the side adjacent to angle A

                              Length of hypotenuse

=>  8  

      17


(c) tanA = Length of the side opposite to angle A

                  Length of the side adjacent to angle A

=>  15

       8


**********************************************


(2) The sides of a right angle triangle PQR are PQ = 7 cm, QR = 25 cm and ∠ Q = 90 deg respectively. Then find tanQ - tan R.


sol) 







In PQR, we have


By Pythagoras theorem :-


PR^2  =  PQ^2  +  QR^2


PR^2 = (7)^2  +  (24)^2


PR^2 = 49  +  576


PR^2  = 625


PR = _/ 625


PR = 25


Now we  have,



PQ = 7 cm,  QR = 25 cm  and PR = 25 cm


(a) tanP =Length of the side opposite to angle P

                 Length of the side adjacent to angle P

=>  24 

        7


(b) tanR=Length of the side opposite to angle R

                 Length of the side adjacent to angle R

=>   7  

      24


Now,


(c) tanP  -- tanR  


=> 24   --  

       7        24

=> 576  --  49

            168

=>  527

       168

=> 3.13


************************************************


(3) In a right angle triangle ABC with right angle at B, in which a = 24 units units, b = 25 units and /_BAC = 0 . Then, find cos 0  and tan 0.


sol) In  /_\ ABC, we have









 

BC = a = 24 units

AC  = b = 25 units


/_BAC = 0


By Pythagoras theorem :-


AC^2  =  AB^2  +  BC^2


(25)^2  =  AB^2  +  (24)^2


AB^2  = (25)^2  -  (24)^2


AB^2 = 625 - 576


AB^2  = 49


AB = _/49


AB = 7 units


(a)  cos 0  = length of the side adjacent to angle 0

                          length of hypotenuse

=> AB

      AC

=>  7  

      25

=> 0.28 units



(b) tan 0  =Length of the side opposite to angle 0

                   Length of the side adjacent to angle 0

= BC  

      AB

=>  24

        7

=> 3.42 units


*******************************************


(4) If cos A = 12 / 13, then find sin A and tan A

sol) We know that,


Cos AAdjacent side

                  Hypotenuse 

Cos  A =  12

                 13

using Pythagoras Theorem :-


(Hypotenuse)^2 = (opposite )^2  +  (adjacent)^2


(13)^2  =  (opposite)^2  +  (12)^2


(13)^2  -  (12)^2  =  (opposite)^2


169  -  144  =  (opposite)^2


25 =  (Opposite)^2


_/25  = opposite


5 =  opposite


Now we have ,


opposite = 5 units


adjacent = 12 units


Hypotenuse = 13 units


So,


(a) Sin A = Opposite side   =  5  

                     Hypotenuse        13


(b) Tan A =  Opposite side 

                      Adjacent side     12


*******************************


(5) If 3 tan A  = 4, then find sin A and cos A.

sol) Given :-  3 tan A = 4


=> tan A = opposite side

                   3       adjacent side

opposite side = 4


adjacent side  = 3


hypotenuse =?



Using Pythagoras theorem :-


(hypotenuse)^2  =  ( opposite)^2  +  ( adjacent side)^2


(hypotenuse)^2 = ( 4 )^2    +  (3)^2


(hypotenuse)^2  =  16  +  9


( hypotenuse)^2  =  25


hypotenuse =  _/25


hypotenuse = 5 units



Now,


(a) Sin A =  opposite side  =

                      hypotenuse      5


(b) Cos A =  adjacent side  =  3  

                        hypotenuse       5

*************************************




(6) If /_A and /_X are acute angles such that cos A = cos X then show that /_A = /_X.


sol) We know
















cos A = adjacent

              hypoten

=> AC

      AX  -----(1)

Cos X = adjacent 

               hypotenuse

=> CX

      AX   --------(2)

Given :- Cos A  =  Cos X


=> AC = CX

      AX    AX

=> AC = XC


We know 


Angles opposite to equal sides of a triangle are equal.


/_ A =  /_ X


Hence proved



**********************************************


(7) Given cot 0 = 7/8, then evaluate


(1) ( 1 + sin 0) (1 - sin 0)

      ( 1 + cos 0)(1 - cos 0)

sol) Given :- cot 0 = 7/8  =  adjacent side

                                              opposite side
adjacent side = 

opposite side = 8


(Hyp)^2  = (oppo)^2  +  (adja)^2


   "           =  ( 8)^2  +  ( 7)^2


   "           = 64  +  49


 (Hyp)^2  = 113


(Hyp)  =  _/113


Now,


Sin 0 = Opposite side  =    8   
                Hypotenuse    _/113


Cos 0adjacent side  =    7   

                Hypotenuse      _/113


(1  +  sin 0 ) ( 1 - sin 0)

(1  + cos 0)  (1  - cos 0)


**************************

Using (a +b) (a-b) = a^2  -  b^2
***************************


=> (1^2  -  sin^2  0)
      ( 1^2  -  cos^2 0)

=> (1  -     (  8  )^2  )

                _/113        

     (  1   -    (   7   )  ^2  )

                 _/113


=>  (  1 -   64   )

                113     

      ( 1  -  49  )

               113


=>      ( 113  -  64 )

                   113                
           (  113  -  49  )
                    113

=> 113  -  64

     113  -  49

=>  49

       64

*****************************


(2) ( 1 + sin 0)
           cos 0

Sol)  ( 1  +    8   )

                 -/113       
                 7
             _/113

=>  (  _/113  +  8)

               _/113     
                   7         
               _/113

=> (  _/113  +  8)

                   7

********************************



(8) In a right angle triangle ABC , right angle is at "B" , if tan A = _/3 then find the value of

(1)  Sin A Cos C  +  Cos A  Sin C


sol) Given :- Tan A = _/3   =   opposite side

                                        1        adjacent side














(Hyp)^2  = ( Oppo)^2  +  (adja)^2


   "           =  (_/3)^2   +  ( 1 )^2 )


   "          =  ( 3  +  1)  


(Hyp) =  _/4  = 2


Now we got


Opposite side =  _/3


Adjacent side =  1


Hypotenuse = 2


Now,


Sin A  = side Opposite to angle A   =  _/3 / 2

                              Hypotenuse               

Sin C side opposite to angle C  =  1 / 2

                         Hypotenuse                 


Cos A side adjacent to angle A   =  1 / 2

                           Hypotenuse              

Cos Cadjacent to angle C =  _/3 / 2

                        Hypotenuse                      

Now


(a) Sin A Cos C  +  Cos A  Sin C


sol) _/3  *  _/3   +  1  *  1  

          2         2        2      2

=>   +   1

       4        4

=>   4  / 4 =  1


*******************


(2) cos A  cos C - sin A sin C

sol)  1  *   _/3     --   _/3   *  1   

        2          2              2       2

=>  _/3 / 4  -  _/3 / 4


=> 0


*********************************************************************************




(*) Trigonometric ratios


Example-4. In ABC, right angle is at B, AB=5cm and ∠ACB = 30 deg. determine the lengths of the sides BC and AC.

Sol) Given AB=5 cm and ∠ACB = 30 deg.

To  find the length of side BC, we will choose the trignometric ratio involving BC and the given side AB

Since BC is the side adjacent to angle C and AB is the side opposite to angle C.

Therefore,

AB = Tan C
BC

i.e,  = Tan 30 deg =  
     BC                           √3 


Which gives BC = 5√3  cm

Now, by using the Pythagoras theorem

AC^2 = AB^2 + BC^2

AC^2 = (5)^2 + (5√3)^2

AC^2 = 25 + 75

AC = √ 100 = 10 cm.

*****************************************

Example-5. A chord of a circle of radius 6cm is making an angle 60 deg at the center. Find the length of the chord. 

sol) Given the radius of the circle OA=OB=6cm

∠AOB = 60 deg

OC is height from 'O' upon AB and it is a angle bisector.



then,∠COB = 30 deg

Consider △COB

sin 30 = BC
              OB

 1    = BC
 2        6

BC = 6/2  = 3

But, length of the chord AB=2BC

=> 2 *3 = 6 cm

Therefore, length of the chord = 6 cm. 

*****************************************

Do you know?

The first use of the idea of 'sine' in the way we use it today was in the book Aryabhatiyam by Aryabhatta, in A.D. 500.

Aryabhatta used the word ardhajya for the half-chord, which was shortened to jya or jiva in due course.

When the Aryabhatiyam was translated into Arabic, the word jiva was retained as it is.

The word jiva was translated into sinus, which means curve, when the Arabic version was translated into Latin. Soon the word sinus, also used as sine, become common in mathematical texts throughout Europe.

An English Professor of astronomy Edmund Gunter(1581-1626) first used the abbreviated notation 'sin'.

****************************************

Example-6. In △PQR, right angle is at Q, PQ= 3 cm and PR = 6 cm. determine ∠QPR and ∠PRQ

sol) Given PQ = 3 cm and PR = 6 cm



Therefore, PQ  = sin R
                   PR

or sin R = 1
                 6       2  

So,∠PRQ = 30 deg

and therefore,∠QPR = 60 deg

NOTE: If one of the sides and any other part(either an acute angle or any side) of a right angle triangle is known, the remaining sides and angles of the triangle can be determined.

*****************************************

Example-7, If sin(A - B) = 1/2, cos(A+B) = 1/2,

0<A+B< 90, A>B, find A and B.

sol) Since sin(A-B) = 1/2

.^., A - B = 30 deg

Also, 

since cos(A+B) = 1/2,

.^., A+B = 60 deg

Solving the above two equations, we get

A = 45 deg

B = 15 deg


*****************************************


         


Exercise - 11.2

(1) Evaluate the following.


(1) sin 45 deg  + cos 45 deg


sol)        +     

       _/2       _/2

******************************

sin 45 deg == cos 45 deg ==  1 / _/2
******************************

=>    2  

      _/2


=> _/2  *  _/2

             _/2

*****************

_/2  *  _/2  = 2
****************

=>  _/2 =  sin 45 deg  + cos 45 deg




******************************


(2)            cos 45 deg         

      sec 30 deg  +  cosec 60

sol)               1  / _/2       

            ----------------------     
            2  / _/3   +  2/_/3

************************


sec 30 deg =  2 / _/3


cosec 60 deg =  2/ _/3


*************************


=>      1  /  _/2

          -------------
           4  /  _/3

=>  _/3

    --------
      4  _/2


***********************************


(3) sin 30 deg  + tan 45 deg  - cosec 60 deg

      cot 45 deg + cos 60 deg  -  sec 30 deg

sol)    1 / 2   +   -  2 / _/3

--------------------------------------
                +  1/2   -  2 / _/3

=>  1


******************************


(4) 2 tan^2  45 deg  + cos^2  30 deg  -  sin^2  60 deg


sol) 2 (1)^2  +  (_/3)^2    -  (_/3)^2

                             2                  2
      
=>  2 + 3/4  --  3/4

=> 2


***************************


(5) sec^2  60 deg  -   tan^2  60 deg

     sin^2  30 deg  +  cos^2  30 deg

sol)  (2)^2   -  (_/3)^2

        -------------------- 
         (1/2)^2  +  ( _/3 /2)^2

=>      4  -  3      

     (1/4  +  3/4 )

=>   1   

     (4/4)

=> 1


****************************

2) Choose the right option and justify your choice -

(1)      2 tan 30 deg    
       1 + tan^2  45 deg


(a) sin 60 deg


(b) cos 60 deg


(c) tan 30 deg


(d) sin 30 deg


sol)  (c)


=>   2 tan 30 deg

        1 + (1)^2

=>  2tan 30 deg

            2

=> tan 30 deg


*************************



(2) 1 - tan^2 45 deg

      1 + tan^2 45 deg

(a) tan 90 deg


(b) 1


(c) sin 45 deg


(d) 0


sol)  (d)


=>   1 - (1)^2

       1 + (1)^2

=> 0


**********************



(3)   2 tan 30 deg

      1 - tan^2 30 deg

(a) cos 60 deg


(b) sin 60 deg


(c) tan 60 deg


(d) sin 30 deg


sol)  (C)


=> 2 *  (1   /  _/3)

-----------------------
     1 -  (1  /  _/3)^2


=>  2 / _/3

    ----------
       2 / 3

=> _/3


= tan 60 deg


************************



3) Evaluate sin 60 deg cos 30 deg  +  sin 30deg cos 60 deg.  What is the value of sin( 60 deg + 30 deg). What can you conclude?


sol) Sin 60 deg  Cos 30 deg  +  Sin 30 deg  Cos 60 deg



*******************

sin 60 = _/3  /  2

Cos 30 = _/3  /  2


Sin 30 =  1  /  2


Cos 60 =  1  /  2


********************


 Putting all values


Sin 60 deg  Cos 30 deg  +  Sin 30 deg  Cos 60 deg


=> ( _/3 /2)  *  ( _/3  /  2)   +   (1  /  2)  *  (1  /  2)


=>  _/3   *   _/3         +         1           

      --------------                ---------       
         2    *    2                  2   *  2

=>        3          +     1         

            4                  4

=>  3   +  1

           4

 1 = Sin 60 deg  Cos 30 deg  +  Sin 30 deg  Cos 60 deg


***********************************************


4) Is it right to say  cos (60 deg  + 30 deg)  = cos 60 deg cos 30 deg - sin 60 deg sin 30 deg


sol)  Yes, it is right to say


Proof :-


LHS :-  Cos ( 60  +  30)


=> Cos  ( 90)


=>  0



RHS :-  Cos 60  Cos 30  -  Sin 60  Sin 30


=>  1 / 2  *  _/3 / 2   ---  _/3 / 2  *  1 / 2


= 0


.^. cos (60 deg  + 30 deg)  = cos 60 deg cos 30 deg - sin 60 deg sin 30 deg


************************************************************


5) In right angle triangle /_\ PQR, right angle is at "Q" and PQ = 6 cm /_ RPQ = 60 deg . Determine the lengths of QR and PR.


solGiven :- PQ = 6 cm  and  /_RPQ  =  60 deg


Cos 60 =  PQ

                 PR













  1   =  6  

  2      PR

PR  = 12 cm


Now,


QR^2  =  (PR^2  --  PQ^2


QR^2 = (12)^2  ---  ( 6)^2


QR^2  =  144  --  36


QR^2 = 108


QR  = _/ 36 * 3


QR  =  6  _/3



.^. PR = 12 cm  and  QR  = 6 _/3 cm


**********************************


6) In /_\ XYZ , right angle is at Y,  YZ = x , and XY = 2x then determine  angle  YXZ  and  angle YZX.


sol)




let /_YXZ = A


Sin A = YZ

              XZ

=>   X    

       2x

=>  1   

       2

Sin A =  1/2


***********************

We know, Sin 30 deg =  1/2
***********************

Sin 30 deg = 1 / 2


Hence


/_YXZ = 30 deg


.^.  /_YZX  =  60 deg   [ Sum of angles of traingle is 180 ]


************************************************


7) Is it right to say that sin ( A + B ) = sin A + Sin B ? Justify your answer.

sol) Assume A =  30  and B = 60


LHS :- sin (A + B)


=> sin ( 30 + 60)


=> sin ( 90 )


=> 1



RHS :- sin 30  +  sin 60


=>  1 / 2   +  _/3  /  2


=> 1  +  _/3

      ---------
          2


LHS =/= RHS


Hence, it is not right to say 


sin ( A + B )  = sin A  + sin B is not true.



********************************************************************


(*) Trigonometric ratios of Complementary Angles


1) sin(90-x) = cos x

2) cos(90-x) = sin x

3) tan(90-x) = cot x

4) cot(90-x) = tan x

5) cosec(90-x) = sec x

6) sec(90-x) = cosec x


Example-8. Evaluate   sec 35  
                                     cosec 55 

sol) cosec A = sec(90-A)

cosec 55 = sec(90-35)

cosec 55 = sec 35

Now

  sec 35    =   sec 35     = 1
cosec 55       sec 35 

*****************************************

Example-9. If cos 7A = sin(A-6), where 7A is an acute angle, find the value of A.

sol) Given cos 7A = sin(A - 6) ----(1)

sin(90-7A) = sin(A-6)

Since (90-7A) & (A-6) are both acute angles,

therefore

90 - 7A = A - 6

8A= 96

A = 12 

*****************************************

Example-10. If sin A = cos B, then prove that A+B = 90

sol) Given that sin A = cos B -------(1)

we know

cos B= sin(90-B),

we can write (1) as

sin A = sin (90-B)

If A,B are acute angles, 

then A = 90 - B

=> A + B = 90 deg 

*****************************************

Example-11. Express sin 81 + tan 81 in terms of trigonometric ratios of angles between 0 deg and 45 deg.

sol) We can write

sin 81 = cosec(90-81) = cos 9

tan 81 = tan(90-81) = cot 9

Then,

sin 81 + tan 81 = cos 9 + cot 9 

*****************************************

Example-12. if A,B and C are interior angles of triangle ABC, then show that 

sin B+C = cos A
        2               2

sol) Given A,B and C are interior angles of right angle triangle ABC then

A+B+C = 180 deg

On dividing the above equation by 2 on both sides, we get

 A + B+C = 90 deg
 2        2

B+C = 90 - A
   2               2 

On taking sin ratio on both sides

sin (B+C) = sin (90  - A)
          2                         2 

sin ( B + C) = cos A
            2                2

Hence proved 

****************************************

Exercise 11.3

(1) Evaluate


(a) tan 36 deg

      cos 54 deg

sol) We have => cot (90 - 0 ) = tan 0


Tan 36 deg = cot ( 90 -  36)

Tan 36 deg = cot (54)


Now,


Tan 36 = cot 54 = 1

Cot 54    cot 54

*****************************


(b) cos12 deg  - sin78 deg


sol) We have => sin ( 90 - 0) = cos 0


Now,


(*) cos 12 - sin 78 


=> sin ( 90 - 12)  -  sin 78


=> sin 78 -- sin 78  = 0


*******************************


(c) cosec31 deg - sec59 deg

sol)  We have = > sec ( 90 - 0 ) = cosec 0


Now,


(*) cosec 31deg  -- sec 59deg 


=> sec (90 - 31)  --  sec 59 deg


=> sec 91 - sec 91 = 0


******************************** 


(d) sin15 deg    sec75 deg


sol) We have  sin 15     1           

                                       cosec 15

=>         1                 

      sec ( 90 - 15)

=>        1    

         sec 15

Now,


(*) sin 15 deg   sec 75deg


=>        1            sec 75 deg

     sec 75 deg

=> 1


*************************


(c) tan26 deg  tan64 deg


sol) We have  cot (90 - 0) = tan 0


Now,


(*) tan 26deg   tan 64deg


=> cot (90 - 26)  tan 64 


=> cot 64  tan 64


*********************/

We have=> cot 0   1     
                                 tan 0
**********************

=>    1         tan 64

     tan 64

=> 1


*******************************



(2) Show that


1) tan48 deg   tan16 deg  tan42 deg   tan74 deg  = 1


sol) tan 48  *  cot ( 90 - 16)  *  cot ( 90 - 42)   *  tan 74


=> tan 48  * cot 74  * cot 48  *  tan 74


=> tan 48          1         *      1     *   tan 74 

                           tan 74       tan 48

=> 1


Hence proved



************************************

    

2) cos36 deg   cos54 deg  - sin36 deg  sin54 deg  = 0


sol) cos 36  *  sin ( 90 - 54)   --  sin 36  *  cos( 90 - 54)


=> (cos 36  *  sin 36)  -- ( sin 36  *  cos 36)


=>    0


Hence proved.


*****************************************



(3) If tan 2A = cot( A - 18 deg), where 2A is an acute angle. Find the value of A.


sol) tan 2A  =  cot ( A- 18)


We have => cot ( 90 - 2A) = tan 2A


Now,


cot ( 90 - 2A) =  cot ( A - 18)


comparing angles


90 - 2A = A - 18


90  +  18  =  A  + 2A


108  = 3A


108  =  A

  3

36  = A


.^. A = 36 deg


*************************************


(4) if tanA = cotB where A and B are acute angles, prove that A + B = 90 deg


sol) Given tan A  = cot B


cot ( 90 - A)  =  cot B


90 - A = B


A+ B = 90


Thus proved


-************************



(5) If A, B and C are interior angles of triangle ABC , then show that tan ( A + B) = cot C

                                                                                                                                   2                2

sol) Given A, B, and C are interior angles of a triangle ABC  then A + B + C = 180 deg


Dividing the above equation by 2 on both sides, we get


A + B + C  =  180

       2                 2

A + B + = 90

    2        2

A  +  B  =  90  -  C

     2                     2


Take "tan" ratio on both sides,

tan ( A + B )  =  tan  ( 90 -  )

             2                               2


We have = > tan ( 90 -  C ) = cot C

                                        2             2


tan  ( A  +  B  )  = cot C

              2                     2

*********************************


(6)  Express sin75 deg + cos65 deg  in terms of trigonometric ratios of angles between 0deg and 45 deg.


sol) We can write 


=> sin 75 = cos ( 90 - 75)  = cos 15


=> cos 65 = sin ( 90 - 65 ) = sin 25


Then,


sin 75  +  cos 65  =  cos 15  + sin 25


15 and 25 are between  0 deg and 45 deg


*********************************************************************************



(*) Trigonometric Identities



We know that an identity is that mathematical equation which is true for all the value of the variable in the equation

Example:- (a+b)^2 = a^2 + b^2 + 2ab is an identity

In the same way, an identity equation having trigonometric ratios of an angle is called trigonometric identity .

1) sin^2 A + cos^2 A = 1

(Do not write cos A^2)



2) sec^2 A - tan^2 A = 1 


*) 1 + tan^2 A = sec^2 A



3) cot^2 A + 1 = cosec^2 A

*) cosec^2 A - cot^2 A = 1 


Example-13. Show that cot𝜽 + tan𝜽 = sec𝜽 cosec.

sol) LHS = cot𝜽 + tan𝜽

= cos𝜽  + sin𝜽
    sin𝜽     cos𝜽

= cos^2𝜽 + sin^2𝜽
        sin𝜽 cos𝜽

        1        
    sin𝜽  cos𝜽

1      *     1   
   sin𝜽      cos𝜽

= cosec 𝜽 sec𝜽

*****************************************

Example-14. Show that tan^2𝜽 + tan^4𝜽 =sec^4𝜽 - sec^2𝜽

sol) L.H.S = tan^2𝜽 + tan^4𝜽

= tan^2𝜽(1 + tan^2𝜽)

= tan^2𝜽 . sec^2𝜽

= (Sec^2𝜽-1) . sec^2𝜽

= sec^4𝜽 - sec^2𝜽 = R.H.S

*****************************************

Example-15. Prove that 

√1 + cos𝜽 = cosec𝜽 + cot𝜽
√1 - cos𝜽

sol) L.H.S = √1 +cos𝜽
                     √1 - cos𝜽

Multiply and divide by 1+cos 𝜽

= √1 + cos𝜽  .  1+ cos𝜽
   √1 -  cos𝜽      1+cos𝜽


= √(1 + cos𝜽)^2
     √1 - cos^2𝜽

= √(1 + cos𝜽)^2
         √sin^2𝜽

= 1 + cos𝜽
       sin𝜽

1      +    cos𝜽
   sin𝜽        sin𝜽

= cosec𝜽 + cot = R.H.S

*****************************************
 
Exercise 11.4

(1) Evaluate the following :


(a) ( 1 + tan 0  + sec 0) ( 1 + cot 0  - cosec 0 )


sol) 1( 1 + cot 0  - cosec 0 )  + tan 0  *  ( 1 + cot 0  - cosec 0 )  


         + sec 0( 1 + cot 0  - cosec 0 )


=> ( 1 + cot 0  - cosec 0 )  + (tan 0  +  cot 0 tan 0  - tan 0 cosec 0


       +  (sec 0  sec 0 cot 0  -  sec 0 cosec 0 )


=> ( 1 + cot 0  - cosec 0  + tan 0  + 


 sin 0*   cos 0  - sin 0   1     + sec 0  +  1   * cos 0  
 cos 0     sin    cos0      sin 0                cos 0  sin 0

-- sec 0 cosec 0 )

=>  ( 1 + cot 0  - cosec 0  + tan 0+ 1  - sec 0  +  sec +  cosec 0  -- sec 0 cosec 0)




=> 2 + cot 0  + tan -  sec0 cosec0




=> 2 + cos 0   +  sin 0  --     1    *   1  

            sin 0        cos     cos 0    sin 0


=> 2  +  cos^2 0  +  sin^2 0   -          1           

              cos 0  *  sin 0                cos 0 * sin 0


******************************


cos^2  0   +  sin^2   = 1

*****************************

=>  2   +           1                -              1            

                 cos 0  *  sin          cos 0  *  sin 0

=> 2



***************************************


(b) ( sin 0 + cos 0)^2  + ( sin 0 - cos 0)^2


sol) it is in (a +b)^2   and  (a-b)^2 form


=>  (sin^2 0  + cos^2 0  +  2 sin 0 cos 0   +


       (sin^2 0  + cos^2 0  - 2 sin 0 cos 0)


******************

sin^2 0  +  cos^2 0 = 1
******************

=>  (1  + 2 sin 0 cos 0  +  1 - 2 sin 0 cos 0 )

=> (1 + 1) = 2


*************************************


(c) ( sec^2 0  - 1) ( cosec^2  0   - 1)

sol) sec^2 *  ( cosec^2  0   - 1)  --    1 *  ( cosec^2  0   - 1)


=> sec^2 0  cosec^2 0  - sec^2 0  - cosec^2 0  + 1


=>     1       *     1        -  (      1         -         1      )  +  1

      cos^2 0     sin^2 0       sin^2 0         cos^2  0

=>            1                  -  cos^2 0  +  sin^2  0  +  1

         cos^2 0  sin^2 0        sin^2  0  cos^2 0


=              1                  -             1                     +  1

         cos^2 0  sin^2 0       sin^2  cos^2 0

=>  0  +  1


=> 1


************************************


(2) Show that ( cosec- cot 0 )^2  =  1 - cos 0
                                                               1 + cos 0

sol) RHS  =  1  -  cos  0

                      1  + cos  0

Multiply and divide by 1 - cos 0



1  -  cos   *    1  - cos 0
1  + cos         1 - cos 0

=>   (1  - cos 0)^2

       1^2  - cos^2 0

************************

we have 1 - cos^2 0 = sin^ 0
*************************

=>    (1 - cos 0 )^2

           sin^2 0

=> (1- cos 0 )^2

           sin 0


=> [   1    -   cos  0]^2

        sin    sin 0

=> ( cosec 0  -- cot 0  )


= LHS


************************************


(3) Show that _/ 1 + sinA   = sec A  + tan A

                            1 - sin A

sol) LHS = _/ 1 + sin A

                        1- sin A

(multiply and divide by  1 + sin A )


= _/ 1 + sin A 1  + sin A

        1 - sin A       1 + sin A

= _/ ( 1 + sin A )^2

          1^2  - sin^2A

(1 - sin^2A = cos^2  )


= 1 + sin A

       cosA

   1      +    sin A

    cos A        cos A

= sec A + tan A  =  RHS


******************************


(4) Show that 1- tan^2  A   = tan^2 A
                        cot^2 A  - 1

sol)  1  -  tan^2

        cot^2A - 1


=     1  - tan^2

        1        - 1
     tan^2A 


1 - tan^2

    1 - tan^2A
        tan^2A


=   1   -  tan^2  A  *      tan^A       

                                  1 - tan^2A

=> tan^2A = RHS


******************************



(5) Show that     1     - cos   = tan 0  sin 0

                         cos 0

sol) LHS =    1      - cos 0

                   cos 0

=>    1  -- cos^2 0

              cos 0

=>  sin^2 0

       cos 0

=> sin 0   *  sin 0

      cos 0

= tan 0 sin


= RHS

**************************


(6) Simplify secA( 1  - sinA) ( secA  + tanA)


sol) sec A ( secA  + tanA   --  sinA *   1       -- sinA tanA )

                                                           cosA

=> sec A ( secA  + tanA - sinA  -- sinA tanA )

                                           cosA

=> sec A (secA + tanA - tanA - sinA tanA)


=> sec A (secA -- sinA tanA )


=> sec^2 A --    1      sinA tanA

                        cos A

=> sec^2A -  sinA   tanA

                      cosA

=> sec^2A -- tan^2A =  1


*********************************


(7) Prove that ( sinA + cosecA)^2  + (cosA + secA)^2  = 7 + tan^2A + cot^2A

sol) LHS = (sinA + cosecA)^2   +  ( cosA  + secA)^2




=> sin^2A  +  cosec^2A  +  2sinA cosecA )    +


   cos^A   + 2 cosA secA  + sec^2 A)





=> sin^2A  +  cosec^2A  + 2sinA *    )      +

                                                         sinA  

   (  cos^2A  + sec^ A + 2cosA *   1  )   

                                                     cos A



=> (sin^2A +  2 + cosec^2A)  +  ( cos^2A  +  2  + sec^2A)


=> (sin^2A  + cos^2A  + 2 + 2 + cosec^2A  + sec^2A)


=> ( 1 + 2 + 2 + cosec^2A  +  sec^2A)


*********************

cosec^2A1 + cot^2A

sec^2A =  1  + tan^2A

*********************

=>  (5 + cot^2A  + 1 + 1 +tan^2A)


=> (7  + cot^2A  + tan^2A)


=> RHS


*****************************************


(8) Simply ( 1- cos 0) ( 1 + cos 0)(1 + cot^2 0)


sol) ( 1 - cos 0 ) ( 1 + cos 0) ( 1 + cot^20)


=> (1^2 -- cos^2 0)  *  cosec^2 0



*******************

1 - cos^2 0  = sin^2 0

cosec^2 0 = 1 + cot^2 0


*******************


=> sin^2 *   1    

                       sin^2 0

=> 1


************************************


(9) If sec0 + tan0 = p, then what is the value of sec0 - tan0?


sol) LHS = sec 0  +  tan 0 = p


Multiply and dividing LHS by  ( sec 0 - tan 0 )


Now,


(sec 0  + tan 0 ) ( sec 0  - tan 0) = p

                 sec 0 - tan 0

sec^2 0  - tan ^2 0  = p

  sec 0  - tan 0

          1            =  p

sec 0 - tan 0

sec 0  - tan 0 = p


*******************************


(10) If cosec 0  + cot 0  = k  then prove that cos 0 = k^2   -  1

                                                                                      k^2   + 1

sol) cosec 0  + cot 0 = k


    1      +    cos 0  = k

sin 0           sin 0

1 + cos 0   = k

    sin 0

(1 + cos 0)^2  = k^2

      sin^2 0

(1 + cos 0)^2   =  k^2

  1  -- cos^2 0

         (1  +  cos0)^2     =  k^2

(1-cos 0) ( 1 + cos 0)


1 + cos 0  =  k^2 ( 1 - cos 0)


1 + cos 0  =  k^2  -  k^2cos0


cos 0 ( 1 + k^2)  =  k^2  -1



cos  0  =  k^2  -1  

                k^2  + 1

hence proved


*********************************************************************************


(*) Optional Exercise
 

1) Prove that 

cot𝜽 - cos𝜽  = cosec𝜽 - 1
cot𝜽 + cos𝜽      cosec𝜽 +1

sol) L.H.S = cot𝜽 - cos𝜽
                     cot𝜽 + cos𝜽

**********
cos𝜽 = cot𝜽
sin𝜽
**********

=> (cos𝜽 - cos𝜽)
      sin𝜽                
     (cos𝜽 + cos𝜽)
      sin𝜽

=> cos𝜽  1    -      1)
                sin𝜽               
     cos𝜽(    1     +    1)
               sin𝜽

****************
  1       = cosec𝜽
sin𝜽
****************

=>  cosec𝜽 - 1
       cosec𝜽 +1


= R.H.S

*****************************************

2) Prove that 

sin 𝜽 - cos𝜽 + 1        1                      
sin 𝜽 +cos𝜽  - 1     sec𝜽 - tan𝜽

using the identity sec^2𝜽  = 1 + tan^2𝜽

sol) L.H.S = (sin𝜽-cos𝜽+1)
                     (sin𝜽+cos𝜽-1)

divide Numerator and denominator by "cos𝜽"

= (sin𝜽-cos𝜽+1)
         cos𝜽
  (sin𝜽+cos𝜽-1)
        cos𝜽


= ( sin𝜽 - cos𝜽 +  1   )
      cos𝜽  cos𝜽    cos𝜽         
   (sin𝜽  +cos𝜽    1   )
    cos𝜽    cos𝜽    cos𝜽


******************
we know

sin𝜽 = tan𝜽
cos𝜽

and

   1     = sec𝜽
cos𝜽

******************

 = (tan𝜽 - 1 + sec𝜽)
   (tan𝜽 + 1- sec𝜽)


Multiply numerator and denominator by
(tan𝜽 - sec𝜽)


=(tan𝜽 - sec𝜽) * (tan𝜽 +sec𝜽 -1)
  (tan𝜽 - sec𝜽) * (tan𝜽 -sec𝜽 +1)

= (tan^2𝜽 -sec^2𝜽) - (tan𝜽-sec𝜽)
   (tan𝜽 - sec𝜽)    + (tan𝜽 - sec𝜽+1)

=        -(1 + tan𝜽 - sec𝜽)          
    (tan𝜽-sec𝜽)(tan𝜽 -sec𝜽+1)

=       -1         
     tan𝜽-sec𝜽

=       1          
     sec𝜽-tan𝜽

= R.H.S




****************************************  
3) Prove that 

(cosecA-sinA)(secA-cosA) =

         1             
  tanA + cotA

sol)  L.H.S = (cosecA-sinA)(secA-cosA)

************
we know

   1     = cosecA
sinA

    1      = secA
cosA

******************

=(   1      - sinA) * (   1      - cosA)
     sinA                   cosA

= (1 - sin^2A) * (  1 - cos^2A)
        sinA                   cosA



**********************

we know

sin^2 A + cos^2 A = 1

1-sin^2 A = cos^2 A

         or

1 - cos^2 A = sin^2 A

***********************

cos^2 A * ( sin^2 A)
  sin A          cos A

= cos A * sin A
            

******************
in place of '1'

1 = sin^2 A + cos^2 A

*******************


   cos A * sin A    
   cos^2 A + sin^2 A 


Divide numerator and denominator by 
"cosA * sinA" 


= cos A * sin A
   cos A * sin A  
=================       

cos^2A + sin^2A
   cosA * sinA  

=              1     
     ===============   

     cos^2 A  + sin^2 A
        cosA * sin A 

=               1
    =====================
       (cos^2 A)     +   ( sin^2 A)
      cosA*sinA          cosA*sinA


=                       1
           ===============
           cos A    +    sin A
           sin A           cos A
     

=               1                R.H.S
        cot A + tan A

****************************************

 

*****************************************

4) Prove that

1 + secA =   sin^2A
   secA        1 - cosA

sol) L.H.S =  1 + sec A
                         sec A


**********
we know

  1   = sec A
cos A
**********

= 1 +    1   
          cosA 
  ==========
          1    
       cos A 



=    cos A + 1
         cos A
    ==========
            1    
         cos


= 1 + cos A


Multiply and divide by "1-cos A


= 1 + cosA *  1 - cosA
                       1 - cosA


******************
we know

(1+cosA) * (1-cosA)
(a+b)           (a-b) = a^2 - b^2

************************* 

= 1 - cos^2A
    1 - cosA


******************
we know

 sin^2 A = 1 - cos^2 A
******************

sin^2 A
    1 - cos A 

= R.H.S

*****************************************

5) Show that 

( 1 +tan^2A) = (1 +tanA)^2 = tan^2A
(1 + cot^2 A)    (1 - cotA)

sol) L.H.S = (1 + tan^2A)
                     (1 + cot^2A)


=  1 + sin^2 A
          cos^2 A
   ============
     1 + cos^2 A
           sin^2 A



= cos^2 A + sin^2 A
             cos^2 A
    ===============
    sin^2 A + cos^2 A
            sin^2 A 



=    1        
   cos^2 A
   ====== 
       1      
   sin^2 A 



 =     1           *      sin^2 A
     cos^2 A                1


= sin^2 A
   cos^2 A 


= tan^2 A

****************** 

(!!) L.H.S =  ( 1 - tanA)^2
                      ( 1 - cotA)^2

sol)  Its in form of 

(a-b)^2 = (1-tanA)^2 

(a-b)^2 = (1 - cotA)^2

expand we get,

= (1 +tan^2 A - 2tan A)
   (1  +cot^2 A - 2cot A) 


****************
we know

sec^2 A = 1 + tan^2 A

       and

cosec^2 A = 1 + cot^2 A

*********************

= (sec^2 A   -    2tan A)
   (cosec^2 A - 2 cot A) 


= sec^2 A - 2 * sin A
                           cos A
   ================
   cosec^2 A - 2 *  cos A
                               sin A 


=    1           - 2 * sin A

   cos^2 A            cos A
   ================
        1          -  2 * cos A
    sin^2 A            sin  A 



= (1 - 2 sin A *  cos A
             cos^2 A 
   ================== 
   ( 1 - 2 sinA * cos A)
                sin^2 A  



= sin^2 A
   cos^2 A


= tan^2 A = R.H.S


****************************************

  
6) Prove that

(secA-1) = (1-cosA)
(secA+1)   (1+cosA)

sol) L.H.S = (sec A - 1 )
                     (sec A + 1)


***************
we know

  1     = sec A
cos A
**************

Now

= (     1     - 1 )
       cos A 
   ============ 
   (    1       +   1  )
      cos A 




= (1 - cos A)
        cos A
   =========
    (1 + cos A)
      cos A 



=  ( 1 - cos A)  =  R.H.S
    ( 1 + cos A)

******************************************

No comments:

Post a Comment